# ADULT CARDIAC SURGERY

in New York State

2000 - 2002

New York State Department of Health October 2004

## Members of the New York State Cardiac Advisory Committee

#### Chair

Kenneth I. Shine, M.D. Executive Vice Chancellor for Health Affairs University of Texas System Austin, Texas

#### **Members**

George Alfieris, M.D. Associate Professor of Surgery Chief of Pediatric Cardiopulmonary Surgery Strong Memorial Hospital SUNY-Health Science Center Rochester and Syracuse, NY

John A. Ambrose, M.D. Professor of Medicine Consultant in Interventional Cardiology NY Medical College St. Vincent's Hospital & Medical Center New York, NY

Edward V. Bennett, M.D. Chief of Cardiac Surgery St. Peter's Hospital, Albany, NY

Frederick Bierman, M.D. Director of Pediatric Cardiology North Shore-LIJ Health System New Hyde Park, NY

Russell E. Carlson, M.D. Chairman, Department of Cardiothoracic Surgery Mercy Hospital Buffalo, NY

Luther T. Clark, M.D. Chief, Division of Cardiovascular Medicine University Hospital of Brooklyn Brooklyn, NY

Alfred T. Culliford, M.D. Professor of Clinical Surgery NYU Medical Center New York, NY

Michael H. Gewitz, M.D. Director of Pediatrics Westchester Medical Center Valhalla, NY

Jeffrey P. Gold, M.D. University Professor of Cardiovascular & Thoracic Surgery Albert Einstein College of Medicine Bronx, NY

Mary Hibberd, M.D. Clinical Associate Professor in Preventive Medicine SUNY - Stony Brook Stony Brook, NY

David R. Holmes Jr., M.D. Professor of Medicine Director, Cardiac Catheterization Laboratory Mayo Clinic, Rochester, MN

**Robert Jones, M.D.** Mary & Deryl Hart Professor of Surgery Duke University Medical Center, Durham, NC

#### Vice Chair

O. Wayne Isom, M.D. Professor and Chairman Department of Cardiothoracic Surgery and Surgeon-in-Chief Weill-Cornell Medical Center New York, NY

**Stanley Katz, M.D.** Chief, Division of Cardiology North Shore - LIJ Health System Manhasset, NY

Thomas J. Kulik, M.D. Associate Professor of Pediatrics University of Michigan Ann Arbor, MI

John J. Lamberti, Jr., M.D. Director, Pediatric Cardiac Surgery Oakland Children's Hospital Oakland, CA

Eric A. Rose, M.D. Professor, Chair and Surgeon-in-Chief, Department of Surgery Columbia-Presbyterian Medical Center New York, NY

**Rev. Robert S. Smith** Chaplain Cornell University Ithaca, NY

Gary Walford, M.D. Director, Cardiac Catheterization Laboratory St. Joseph's Hospital, Syracuse, NY

Deborah Whalen, R.N.C.S., M.B.A., A.N.P. Clinical Service Manager Division of Cardiology Boston Medical Center Boston, MA

Roberta Williams, M.D. Vice President for Pediatrics and Academic Affairs at Childrens Hospital - LA Professor and Chair of Pediatrics at Keck School of Medicine at USC Los Angeles, CA

#### Consultant

Edward L. Hannan, Ph.D. Distinguished Professor & Chair Department of Health Policy, Management & Behavior University at Albany, School of Public Health

#### **Program Adiminstrator**

Paula M. Waselauskas, R.N., M.S.N. Cardiac Services Program NYS Department of Health

## **Cardiac Surgery Reporting System Subcommittee**

### Members & Consultants

Robert Jones, M.D. *(Chair)* Mary & Deryl Hart Professor of Surgery Duke University Medical Center

George Alfieris, M.D. Associate Professor of Surgery Chief of Pediatric Cardiopulmonary Surgery Strong Memorial Hospital SUNY-Health Science Center

Russell E. Carlson, M.D. Chairman, Department of Cardiovascular Medicine Mercy Hospital

Edward V. Bennett, M.D. Chief of Cardiac Surgery St. Peter's Hospital

Alfred T. Culliford, M.D. Professor of Clinical Surgery NYU Medical Center

Jeffrey P. Gold, M.D. University Professor of Cardiovascular & Thoracic Surgery Albert Einstein College of Medicine Edward L. Hannan, Ph.D. Distinguished Professor & Chair Department of Health Policy, Management & Behavior University at Albany, School of Public Health

O. Wayne Isom, M.D. Professor & Chairman Department of Cardiothoracic Surgery Weill – Cornell Medical Center

**Stanley Katz, M.D.** Chief, Division of Cardiology North Shore - LIJ Health System

Eric Rose, M.D. Professor, Chair & Surgeon-in-Chief Department of Surgery Columbia Presbyterian Medical Center

#### Staff to CSRS Analysis Workgroup

Paula M. Waselauskas, R.N., M.S.N. Administrator, Cardiac Services Program New York State Department of Health

Kimberly S. Cozzens, M.A. Cardiac Initiatives Research Manager Cardiac Services Program

Casey S. Joseph, M.P.H. Cardiac Initiatives Research Manager Cardiac Services Program

Rosemary Lombardo CSRS Coordinator Cardiac Services Program Michael J. Racz, M.A. Research Scientist Department of Health Policy, Management & Behavior University at Albany, School of Public Health

**Chuntao Wu, M.D., Ph.D.** Research Scientist Department of Health Policy, Management & Behavior University at Albany, School of Public Health

## TABLE OF CONTENTS

| INTRODU                                        | CTION                                                                                                                                                                                                                           |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORONAF                                        | RY ARTERY BYPASS GRAFT SURGERY (CABG)                                                                                                                                                                                           |
| CARDIAC                                        | VALVE PROCEDURES                                                                                                                                                                                                                |
| THE HEAI                                       | TH DEPARTMENT PROGRAM                                                                                                                                                                                                           |
| PATIENT F                                      | POPULATION                                                                                                                                                                                                                      |
| Data Col<br>Assessing<br>Predicting<br>Computi | USTMENT FOR ASSESSING PROVIDER PERFORMANCE9lection, Data Validation and Identifying In-Hospital Deaths9Patient Risk10g Patient Mortality Rates for Providers10ng the Risk-Adjusted Rate10ing the Risk-Adjusted Mortality Rate10 |
| -                                              | s Contributes to Quality Improvement                                                                                                                                                                                            |
| RESULTS                                        |                                                                                                                                                                                                                                 |
| 2002 Risk H                                    | Factors for CABG Surgery                                                                                                                                                                                                        |
| Table 1                                        | Multivariable Risk Factor Equation for CABG Hospital<br>Deaths in New York State in 2002                                                                                                                                        |
| 2002 HOSI                                      | PITAL OUTCOMES FOR CABG SURGERY 13                                                                                                                                                                                              |
| 2000-2002                                      | HOSPITAL OUTCOMES                                                                                                                                                                                                               |
| Table 2                                        | Observed, Expected and Risk-Adjusted Mortality<br>Rates (RAMR) for CABG Surgery in New York State, 2002 Discharges                                                                                                              |
| Table 3                                        | Valve or Valve/CABG Surgery Observed, Expected, and Risk-Adjusted Mortality Rates in<br>New York State, 2000-2002 Discharges                                                                                                    |
| Table 4                                        | Volume for Valve Procedures in New York State, 2000-2002 Discharges                                                                                                                                                             |
| 2000 - 2002                                    | 2 Hospital and Surgeon Outcomes                                                                                                                                                                                                 |
| Table 5                                        | Surgeon Observed, Expected, and Risk-Adjusted Mortality Rates<br>for Isolated CABG And Valve Surgery (with or without CABG done in combination)<br>in New York State, 2000-2002 Discharges                                      |
| Table 6                                        | Summary Information for Surgeons Practicing at More Than One Hospital, 2000-2002 27                                                                                                                                             |
| SURGEON                                        | AND HOSPITAL VOLUMES FOR TOTAL ADULT CARDIAC SURGERY, 2000-2002 31                                                                                                                                                              |
| Table 7                                        | Surgeon and Hospital Volume for Isolated CABG, Valve or Valve/CABG,<br>Other Cardiac Surgery, and Total Cardiac Surgery, 2000-2002                                                                                              |
| CRITERIA                                       | USED IN REPORTING SIGNIFICANT RISK FACTORS (2002)                                                                                                                                                                               |
| MEDICAL                                        | TERMINOLOGY                                                                                                                                                                                                                     |
| APPENDIX                                       | X 1 2000-2002 RISK FACTORS FOR ISOLATED CABG IN-HOSPITAL MORTALITY                                                                                                                                                              |

| APPENDIX 2 2000-2002 RISK FACTORS FOR VALVE SURGERY IN-HOSPITAL MORTALITY 44          |
|---------------------------------------------------------------------------------------|
| APPENDIX 3 2000-2002 RISK FACTORS FOR VALVE AND<br>CABG SURGERY IN-HOSPITAL MORTALITY |
| NEW YORK STATE CARDIAC SURGERY CENTERS                                                |

## INTRODUCTION

The information contained in this booklet is intended for health care providers, patients and families of patients who are considering cardiac surgery. It provides data on risk factors associated with in-hospital deaths following coronary artery bypass and/or heart valve surgery and lists hospital and physician-specific mortality rates which have been risk-adjusted to account for differences in patient severity of illness.

New York State has taken a leadership role in setting standards for cardiac services, monitoring outcomes and sharing performance data with patients, hospitals, and physicians. Hospitals and doctors involved in cardiac care have worked in cooperation with the Department of Health and the Cardiac Advisory Committee to compile accurate and meaningful data that can and has been used to enhance quality of care. We believe that this process has been instrumental in achieving the excellent outcomes that are evidenced in this report for centers across New York State.

We are pleased to be able to continue to provide expanded information in this year's report that encompasses outcomes for isolated coronary artery bypass surgery (CABG), valve surgery, and the two procedures done in combination. Isolated CABG represents the majority of adult cardiac surgeries performed, and we have reported risk-adjusted outcomes for that procedure for over 10 years. However, many additional patients undergo procedures each year to repair or replace heart valves or undergo valve surgery done in combination with CABG. This report provides important information on the risk factors and outcomes for both CABG and valve surgery.

We encourage doctors to discuss this information with their patients and colleagues as they develop treatment plans. While these statistics are an important tool in making informed health care choices, individual treatment plans must be made by doctors and patients together after careful consideration of all pertinent factors. It is important to recognize that many factors can influence the outcome of cardiac surgery. These include the patient's health before the procedure, the skill of the operating team and general after care. In addition, keep in mind that the information in this booklet does not include data after 2002. Important changes may have taken place in some hospitals during that time period.

In developing treatment plans, it is important that patients and physicians alike give careful consideration to the importance of healthy lifestyles for all those affected by heart disease. While some risk factors, such as heredity, gender and age cannot be controlled, others certainly can. Controllable risk factors that contribute to a higher likelihood of developing coronary artery disease are high cholesterol levels, cigarette smoking, high blood pressure, obesity and a lack of exercise. Limiting these risk factors after surgery will continue to be important in minimizing the occurrence of new blockages.

Providers of this State and the Cardiac Advisory Committee are to be commended for the excellent results that have been achieved through this cooperative quality improvement system. The Department of Health will continue to work in partnership with hospitals and physicians to ensure continued high quality of cardiac surgery available to New York residents.

## CORONARY ARTERY BYPASS GRAFT SURGERY (CABG)

Heart disease is, by far, the leading cause of death in New York State, and the most common form of heart disease is atherosclerotic coronary artery disease. Different treatments are recommended for patients with coronary artery disease. For some people, changes in lifestyle, such as dietary changes, not smoking and regular exercise, can result in great improvements in health. In other cases, medication prescribed for high blood pressure or other conditions can make a significant difference.

Sometimes, however, an interventional procedure is recommended. The two common procedures performed on patients with coronary artery disease are coronary artery bypass graft (CABG) surgery and percutaneous coronary interventions (PCI).

CABG surgery is a procedure in which a vein or artery from another part of the body is used to create an alternate path for blood to flow to the heart, bypassing the arterial blockage. Typically, a section of one of the large (saphenous) veins in the leg, the radial artery in the arm or the mammary artery in the chest is used to construct the bypass. One or more bypasses may be performed during a single operation, since providing several routes for the blood supply to travel is believed to improve long-term success for the procedure. Triple and quadruple bypasses are often done for this reason, not necessarily because the patient's condition is more severe. CABG surgery is one of the most common, successful major operations currently performed in the United States.

As is true of all major surgery, risks must be considered. The patient is totally anesthetized, and there is generally a substantial recovery period in the hospital followed by several weeks of recuperation at home. Even in successful cases, there is a risk of relapse causing the need for another operation.

Those who have CABG surgery are not cured of coronary artery disease; the disease can still occur in the grafted blood vessels or other coronary arteries. In order to minimize new blockage, patients should continue to reduce their risk factors for heart disease.

### CARDIAC VALVE PROCEDURES

Heart valves control the flow of blood as it enters the heart and is pumped from the chambers of the heart to the lungs for oxygenation and back to the body. There are four valves: the tricuspid, mitral, pulmonic and aortic valves. Heart valve disease occurs when a valve cannot open all the way because of disease or injury, thus causing a decrease in blood flow to the next heart chamber. Another type of valve problem occurs when the valve does not close completely, which leads to blood leaking backwards into the previous chamber. Either of these problems causes the heart to work harder to pump blood, or causes blood to back up in the lungs or lower body.

When a valve is stenotic (too narrow to allow enough blood to flow through the valve opening) or incompetent (cannot close tightly enough to prevent the backflow of blood), one of the treatment options is to repair the valve. Repair of a stenotic valve typically involves widening the valve opening, whereas repair of an incompetent valve is typically achieved by narrowing or tightening the supporting structures of the valve. The mitral valve is particularly amenable to valve repairs because its parts can frequently be repaired without having to be replaced. In many cases, defective valves are replaced rather than repaired, using either a mechanical or biological valve. Mechanical valves are built using durable materials that generally last a lifetime, and biological valves are made from tissue taken from pigs, cows, or humans. Mechanical and biological valves each have advantages and disadvantages that can be discussed with referring physicians.

The most common heart valve surgeries involve the aortic and mitral valves. Patients undergoing heart surgery are totally anesthetized and are usually placed on a heart-lung machine, whereby the heart is stopped for a short period of time using special drugs. As is the case for CABG surgery, there is a recovery period of several weeks at home after being discharged from the hospital. Some patients require replacement of more than one valve, and some patients with both coronary artery disease and valve disease require valve replacement and CABG surgery. This report contains outcomes for the following valve procedures when done alone or in combination with CABG: Aortic Valve Replacement, Mitral Valve Repair, Mitral Valve Replacement, and Multiple Valve Surgery.

## THE HEALTH DEPARTMENT PROGRAM

The New York State Department of Health has been studying the effects of patient and treatment characteristics (called risk factors) on outcomes for patients with heart disease. Detailed statistical analyses of the information received from the study have been conducted under the guidance of the New York State Cardiac Advisory Committee (CAC), a group of independent practicing cardiac surgeons, cardiologists and other professionals in related fields.

The results have been used to create a cardiac profile system which assesses the performance of hospitals and surgeons over time, independent of the severity of individual patients' pre-operative conditions.

## PATIENT POPULATION

All patients undergoing isolated coronary artery bypass graft surgery (CABG surgery with no other major heart surgery during the same admission) in New York State hospitals who were discharged in 2002 are included in the one-year results for coronary artery bypass surgery. Similarly, all patients undergoing isolated CABG and/or valve surgery who were discharged between January 1, 2000 and December 31, 2002 are included in the three-year results. Designed to improve health in people with heart disease, this program is aimed at:

- understanding the health risks of patients which adversely affect how they will fare in coronary artery bypass surgery and/or valve surgery;
- improving the results of different treatments of heart disease;
- improving cardiac care;
- providing information to help patients make better decisions about their own care.

Isolated CABG surgery represented 66.46 percent of all adult cardiac surgery for the three-year period covered by this report. Valve or combined valve/ CABG surgery represented 24.73 percent of all adult cardiac surgery for the same three year period. Total cardiac surgery, isolated CABG, valve or valve/ CABG surgery, and other cardiac surgery volumes are tabulated in Table 7 by hospital and surgeon for the period 2000 through 2002.

## **RISK ADJUSTMENT FOR ASSESSING PROVIDER PERFORMANCE**

Provider performance is directly related to patient outcomes. Whether patients recover quickly, experience complications or die following a procedure is in part a result of the kind of medical care they receive. It is difficult, however, to compare outcomes across hospitals when assessing provider performance, because different hospitals treat different types of patients. Hospitals with sicker patients may have higher rates of complications and death than other hospitals in the state. The following describes how the New York State Department of Health adjusts for patient risk in assessing provider outcomes.

## Data Collection, Data Validation and Identifying In-Hospital Deaths

As part of the risk-adjustment process, New York State hospitals where cardiac surgery is performed provide information to the Department of Health for each patient undergoing that procedure. Cardiac surgery departments collect data concerning patients' demographic and clinical characteristics. Approximately 45 of these characteristics (called risk factors) are collected for each patient. Along with information about the procedure, physician and the patient's status at discharge, these data are entered into a computer, and sent to the Department of Health for analysis.

Data are verified through review of unusual reporting frequencies, cross-matching of cardiac surgery data with other Department of Health databases and a review of medical records for a selected sample of cases. These activities are extremely helpful in ensuring consistent interpretation of data elements across hospitals.

The analysis bases mortality on deaths occurring during the same hospital stay in which a patient underwent cardiac surgery. In the past, the data validation activities have focused on the acute care stay at the surgery center. However, changes in the health care system have resulted in an increasing number of administrative discharges within the hospital. For example, a patient may be discharged from an acute care bed to a hospice or rehabilitation bed within the same hospital stay in order to differentiate reimbursement for differing levels of care.

In this report, an in-hospital death is defined as a patient who died subsequent to CABG or valve surgery during the same admission, or was discharged to hospice care.

#### Assessing Patient Risk

Each person who develops heart disease has a unique health history. A cardiac profile system has been developed to evaluate the risk of treatment for each individual patient based on his or her history, weighing the important health factors for that person based on the experiences of thousands of patients who have undergone the same procedures in recent years. All important risk factors for each patient are combined to create a risk profile.

An 80-year-old patient with a history of a previous stroke, for example, has a very different risk profile than a 40-year-old with no previous stroke.

The statistical analyses conducted by the Department of Health consist of determining which of the risk factors collected are significantly related to inhospital death for CABG and/or valve surgery, and determining how to weight the significant risk factors to predict the chance each patient will have of dying in the hospital, given his or her specific characteristics.

Doctors and patients should review individual risk profiles together. Treatment decisions must be made by doctors and patients together after consideration of all the information.

#### Predicting Patient Mortality Rates for Providers

The statistical methods used to predict mortality on the basis of the significant risk factors are tested to determine if they are sufficiently accurate in predicting mortality for patients who are extremely ill prior to undergoing the procedure as well as for patients who are relatively healthy. These tests have confirmed that the models are reasonably accurate in predicting how patients of all different risk levels will fare when undergoing cardiac surgery. The mortality rate for each hospital and surgeon is also predicted using the relevant statistical models. This is accomplished by summing the predicted probabilities of death for each of the provider's patients and dividing by the number of patients. The resulting rate is an estimate of what the provider's mortality rate would have been if the provider's performance were identical to the State performance. The percentage is called the predicted or expected mortality rate.

#### Computing the Risk-Adjusted Rate

The risk-adjusted mortality rate represents the best estimate, based on the associated statistical model, of what the provider's mortality rate would have been if the provider had a mix of patients identical to the statewide mix. Thus, the risk-adjusted mortality rate has, to the extent possible, ironed out differences among providers in patient severity of illness, since it arrives at a mortality rate for each provider for an identical group of patients.

To get the risk-adjusted mortality rate, the observed mortality rate is first divided by the provider's expected mortality rate. If the resulting ratio is larger than one, the provider has a higher mortality rate than expected on the basis of its patient mix; if it is smaller than one, the provider has a lower mortality rate than expected from its patient mix. For isolated CABG patients the ratio is then multiplied by the overall statewide mortality rate (2.27% in 2002) to obtain the provider's risk-adjusted rate. For the three year period 2000-2002, the ratio is then multiplied by 2.26% for isolated CABG patients or 6.94% for valve or valve/ CABG patients.

#### Interpreting the Risk-Adjusted Mortality Rate

If the risk-adjusted mortality rate is lower than the statewide mortality rate, the provider has a better performance than the State as a whole; if the riskadjusted mortality rate is higher than the statewide mortality rate, the provider has a worse performance than the State as a whole.

The risk-adjusted mortality rate is used in this report as a measure of quality of care provided by hospitals and surgeons. However, there are reasons that a provider's risk-adjusted mortality rate may not be indicative of its true quality. For example, extreme outcome rates may occur due to chance alone. This is particularly true for low-volume providers, for whom very high or very low mortality rates are more likely to occur than for high-volume providers. To prevent misinterpretation of differences caused by chance variation, confidence intervals are reported in the results. The interpretations of those terms are provided later when the data are presented.

Differences in hospital coding of risk factors could be an additional reason that a provider's risk-adjusted rate may not be reflective of quality of care. The Department of Health monitors the quality of coded data by reviewing samples of patients' medical records to ascertain the presence of key risk factors. When significant coding problems have been discovered, hospitals have been required to recode these data and have been subjected to subsequent monitoring.

A final reason that risk-adjusted rates may be misleading is that overall preprocedural severity of illness may not be accurately estimated because important risk factors are missing. This is not considered to be an important factor, however, because the New York State data system contains virtually every risk factor that has ever been demonstrated to be related to patient mortality in national and international studies.

Although there are reasons that risk-adjusted mortality rates presented here may not be a perfect reflection of quality of care, the Department of Health feels that this information is a valuable aid in choosing providers for cardiac surgery.

#### How This Contributes to Quality Improvement

The goal of the Department of Health and the Cardiac Advisory Committee is to improve the quality of care related to cardiac surgery in New York State. Providing the hospitals and cardiac surgeons in New York State with data about their own outcomes for these procedures allows them to examine the quality of the care they provide, and to identify areas that need improvement.

The data collected and analyzed in this program are reviewed by the Cardiac Advisory Committee. Committee members assist with interpretation and advise the Department of Health regarding hospitals and surgeons that may need special attention. Committee members have also conducted site visits to particular hospitals, and have recommended that some hospitals obtain the expertise of outside consultants to design improvements for their programs.

The overall results of this program of ongoing review show that significant progress is being made. In response to the program's results for CABG surgery, facilities have refined patient criteria, evaluated patients more closely for pre-operative risks and directed them to the appropriate surgeon. More importantly, many hospitals have identified medical care process problems that have led to less than optimal outcomes, and have altered those processes to achieve improved results. It is believed that these same issues and trends will be seen with valve surgery as time goes on.

### RESULTS

#### 2002 Risk Factors for CABG Surgery

The significant pre-operative risk factors for coronary artery bypass surgery in 2002 are presented in Table 1.

Roughly speaking, the odds ratio for a risk factor represents the number of times more likely a patient with that risk factor has of dying in the hospital during or after CABG surgery than a patient without the risk factor, all other risk factors being the same. For example, the odds ratio for the risk factor shock is 5.854. This means that a patient who was in shock prior to surgery is approximately 5.854 times as likely to die in the hospital as a patient who was not in shock but who has the same other significant risk factors.

For most of the risk factors in the table, there are only two possibilities: having the risk factor or not having it (for example, a patient either is in shock or is not in shock). Exceptions are age: number of years greater than 60 and ejection fraction, which is a measure of the heart's ability to pump blood.

For age, the odds ratio roughly represents the number of times more likely a patient who is older than 60 is to die in the hospital than a patient who is one year younger. Thus, a patient undergoing CABG surgery who is 72 years old has a chance of dying that is approximately 1.077 times the chance that a patient 71 years old undergoing CABG has of dying in the hospital.

The odds ratios for the categories for ejection fraction are relative to the omitted range (40% and higher). Thus, patients with an ejection fraction of less than 20% have odds of dying in the hospital that are 4.727 times the odds of a person with an ejection fraction of 40% or higher, all other risk factors being the same.

|                                      | L              |             |         |            |
|--------------------------------------|----------------|-------------|---------|------------|
| Patient Risk Factor                  | Prevalence (%) | Coefficient | P-Value | Odds Ratio |
| Demographic                          |                |             |         |            |
| Age: Number of years greater than 60 | —              | 0.0741      | < .0001 | 1.077      |
| Female Gender                        | 28.67          | 0.7405      | < .0001 | 2.097      |
| Hemodynamic State                    |                |             |         |            |
| Unstable                             | 0.95           | 0.7669      | 0.0135  | 2.153      |
| Shock                                | 0.48           | 1.7672      | < .0001 | 5.854      |
| Ventricular Function                 |                |             |         |            |
| Ejection Fraction <20%               | 1.93           | 1.5534      | < .0001 | 4.727      |
| Ejection Fraction 20-29%             | 6.87           | 1.0189      | < .0001 | 2.770      |
| Ejection Fraction 30-39%             | 13.29          | 0.5774      | < .0001 | 1.781      |
| Previous MI < 6 hours                | 0.69           | 1.9768      | < .0001 | 7.220      |
| Previous MI 6-23 hours               | 0.94           | 1.3786      | < .0001 | 3.969      |
| Previous MI 1-20 days                | 22.33          | 0.4979      | < .0001 | 1.645      |
| Comorbidities                        |                |             |         |            |
| COPD                                 | 16.50          | 0.4748      | < .0001 | 1.608      |
| Extensively Calcified Aorta          | 4.84           | 0.7360      | < .0001 | 2.087      |
| Peripheral Vascular Disease          | 11.22          | 0.5614      | < .0001 | 1.753      |
| Renal Failure, Dialysis              | 1.63           | 1.7190      | < .0001 | 5.579      |
| Previous Open Heart Operations       | 4.93           | 1.1671      | < .0001 | 3.213      |

Table 1: Multivariable risk factor equation for CABG hospital deaths in New York State in 2002.

Intercept = -5.8183 C Statistic = 0.823

## 2002 HOSPITAL OUTCOMES FOR CABG

Table 2 presents the CABG surgery results for the 36 hospitals performing this operation in New York during the year 2002. The table contains, for each hospital, the number of isolated CABG operations (CABG operations with no other major heart surgery) resulting in 2002 discharges, the number of in-hospital deaths, the observed mortality rate, the expected mortality rate based on the statistical model presented in Table 1, the risk-adjusted mortality rate, and a 95% confidence interval for the risk-adjusted mortality rate.

As indicated in Table 2, the overall mortality rate for the 16,120 CABG procedures performed at the 36 hospitals was 2.27%. Observed mortality rates ranged from 0.00% to 5.21%. The range of expected mortality rates, which measure patient severity of illness, was 0.84% to 3.18%.

The risk-adjusted mortality rates, which are used to measure performance, ranged from 0.00% to 4.86%. Three hospitals (Buffalo General, Mount Sinai and NYU Hospitals Center) had risk-adjusted mortality rates that were significantly higher than the statewide rate. Three hospitals (St. Joseph's, Staten Island – North and Vassar Brothers Hospital) had significantly lower risk-adjusted rates than the State.

### 2000 - 2002 HOSPITAL OUTCOMES

Table 3 presents the combined Valve Only and Valve/ CABG surgery results for the 36 hospitals performing these operations in New York during the years 2000-2002. The table contains, for each hospital, the number of combined Valve Only and Valve/CABG operations resulting in 2000-2002 discharges, the number of in-hospital deaths, the observed mortality rate, the expected mortality rate based on the statistical models presented in Appendices 2-3, the risk-adjusted mortality rate.

As indicated in Table 3, the overall mortality rate for the 19,057 combined Valve Only and Valve/CABG procedures performed at the 36 hospitals was 6.94%. Observed mortality rates ranged from 0.00% to 11.39%. The range of expected mortality rates, which measure patient severity of illness, was 2.87% to 8.86%.

The risk-adjusted mortality rates, which are used to measure performance, ranged from 0.00% to 11.43%. Two hospitals (Lenox Hill and Strong Memorial Hospital) had risk-adjusted mortality rates that were significantly higher than the statewide rate. Four hospitals (St. Francis Hospital, St. Peter's Hospital, Vassar Brother's Hospital and Weill Cornell – NY Presbyterian Hospital) had significantly lower risk-adjusted rates than the State. Table 4 presents valve procedures performed at the 36 cardiac surgery hospitals in New York during 2000-2002. The table contains, for each hospital, the number of valve operations (as defined by eight separate groups: Aortic Valve Replacements, Aortic Valve Replacements plus CABG, Mitral Valve Replacement, Mitral Valve Replacement plus CABG, Mitral Valve Repair, Mitral Valve Repair plus CABG, Multiple Valve Surgery, Multiple Valve Surgery plus CABG) resulting in 2000-2002 discharges. In addition to the hospital volumes, the number of in-hospital deaths for the State (Statewide Mortality Rate) is given for each group. Unless otherwise specified, when the report refers to Valve or Valve/CABG procedures it is referring to the last column of Table 4.

#### Definitions of key terms are as follows:

The **observed mortality rate (OMR)** is the observed number of deaths divided by the number of patients.

The **expected mortality rate (EMR)** is the sum of the predicted probabilities of death for all patients divided by the total number of patients.

The **risk-adjusted mortality rate (RAMR)** is the best estimate, based on the statistical model, of what the provider's mortality rate would have been if the provider had a mix of patients identical to the statewide mix. It is obtained by first dividing the observed mortality rate by the expected mortality rate, and then multiplying by the relevant statewide mortality rate (for example 2.26% for isolated CABG patients in 2000-2002 or 6.94% for Valve or Valve/CABG patients in 2000-2002).

**Confidence Intervals** are used to identify which hospitals had significantly more or fewer deaths than expected given the risk factors of their patients. The confidence interval identifies the range in which the risk-adjusted mortality rate may fall. Hospitals with significantly higher rates than expected after adjusting for risk are those where the confidence interval range falls entirely above the statewide mortality rate. Hospitals with significantly lower rates than expected given the severity of illness of their patients before surgery have the entire confidence interval range entirely below the statewide mortality rate.

The more cases a provider performs, the narrower their confidence interval will be. This is because as a provider performs more cases, the likelihood of chance variation in the RAMR decreases.

| Hospital                | Cases | Deaths | OMR  | EMR  | RAMR    | 95% CI<br>for RAMR |
|-------------------------|-------|--------|------|------|---------|--------------------|
| Albany Medical Center   | 601   | 15     | 2.50 | 2.00 | 2.83    | (1.58, 4.67)       |
| Arnot-Ogden             | 152   | 2      | 1.32 | 1.76 | 1.70    | (0.19, 6.13)       |
| Bellevue                | 78    | 0      | 0.00 | 0.84 | 0.00    | (0.00,12.76)       |
| Beth Israel             | 380   | 7      | 1.84 | 1.86 | 2.25    | (0.90, 4.64)       |
| Buffalo General         | 663   | 26     | 3.92 | 1.91 | 4.67 *  | (3.05, 6.85)       |
| Columbia Presbyterian   | 522   | 10     | 1.92 | 1.81 | 2.40    | (1.15, 4.41)       |
| Ellis Hospital          | 395   | 9      | 2.28 | 1.57 | 3.29    | (1.50, 6.24)       |
| Erie County             | 269   | 4      | 1.49 | 1.93 | 1.75    | (0.47, 4.47)       |
| IJ Medical Center       | 290   | 3      | 1.03 | 2.14 | 1.10    | (0.22, 3.20)       |
| _enox Hill              | 642   | 12     | 1.87 | 2.10 | 2.02    | (1.04, 3.53)       |
| Maimonides              | 704   | 24     | 3.41 | 3.18 | 2.44    | (1.56, 3.62)       |
| Mercy Hospital          | 113   | 4      | 3.54 | 2.16 | 3.72    | (1.00, 9.53)       |
| Millard Fillmore        | 456   | 6      | 1.32 | 1.81 | 1.65    | (0.60, 3.60)       |
| Montefiore - Einstein   | 283   | 2      | 0.71 | 2.08 | 0.77    | (0.09, 2.79)       |
| Montefiore - Moses      | 300   | 8      | 2.67 | 2.00 | 3.02    | (1.30, 5.96)       |
| Aount Sinai             | 301   | 11     | 3.65 | 1.71 | 4.86 *  | (2.42, 8.70)       |
| NY Hospital - Queens    | 312   | 3      | 0.96 | 1.71 | 1.28    | (0.26, 3.74)       |
| IYU Hospitals Center    | 307   | 16     | 5.21 | 2.75 | 4.31 *  | (2.46, 6.99)       |
| North Shore             | 728   | 17     | 2.34 | 2.51 | 2.11    | (1.23, 3.38)       |
| Rochester General       | 544   | 13     | 2.39 | 2.90 | 1.87    | (1.00, 3.20)       |
| St. Elizabeth           | 431   | 16     | 3.71 | 2.20 | 3.83    | (2.19, 6.21)       |
| St. Francis             | 1592  | 45     | 2.83 | 2.51 | 2.56    | (1.87, 3.42)       |
| St. Josephs             | 614   | 6      | 0.98 | 2.48 | 0.90 ** | (0.33, 1.95)       |
| St. Lukes-Roosevelt     | 230   | 7      | 3.04 | 2.38 | 2.90    | (1.16, 5.98)       |
| St. Peters              | 620   | 5      | 0.81 | 1.74 | 1.05    | (0.34, 2.46)       |
| St. Vincents            | 322   | 8      | 2.48 | 2.72 | 2.07    | (0.89, 4.08)       |
| Staten Island - North   | 497   | 4      | 0.80 | 2.23 | 0.82 ** | (0.22, 2.10)       |
| Strong Memorial         | 352   | 8      | 2.27 | 2.95 | 1.75    | (0.75, 3.45)       |
| Jnited Health Services  | 322   | 7      | 2.17 | 2.75 | 1.79    | (0.72, 3.69)       |
| Jniv Hosp-Stony Brook   | 538   | 10     | 1.86 | 1.92 | 2.20    | (1.05, 4.05)       |
| Jniv. Hosp Upstate      | 364   | 8      | 2.20 | 2.78 | 1.80    | (0.77, 3.54)       |
| Jniv. Hosp. of Brooklyn | 117   | 2      | 1.71 | 1.44 | 2.69    | (0.30, 9.73)       |
| /assar Brothers         | 217   | 0      | 0.00 | 2.27 | 0.00 ** | (0.00, 1.69)       |
| Veill Cornell-NYP       | 743   | 14     | 1.88 | 2.01 | 2.13    | (1.16, 3.57)       |
| Westchester Med. Ctr.   | 601   | 16     | 2.66 | 2.63 | 2.30    | (1.31, 3.73)       |
| Winthrop Univ. Hosp.    | 520   | 18     | 3.46 | 2.83 | 2.78    | (1.64, 4.39)       |
| Total                   | 16120 | 366    | 2.27 | 2.27 | 2.27    |                    |

 Table 2: Observed, Expected, and Risk-Adjusted Mortality Rates (RAMR) for isolated CABG Surgery in New York State,

 2002 Discharges (Listed Alphabetically by Hospital)

\* Risk-adjusted mortality rate significantly higher than statewide rate based on 95% confidence interval.

\*\* Risk-adjusted mortality rate significantly lower than statewide rate based on 95% confidence interval.

Table 3: Valve or Valve/CABG Surgery Observed, Expected, and Risk-Adjusted Mortality Rates in New York State, 2000-2002 Discharges.

| Hospital                | Cases | Deaths | OMR   | EMR  | RAMR    | 95% CI<br>for RAMR |
|-------------------------|-------|--------|-------|------|---------|--------------------|
| Albany Medical Center   | 541   | 31     | 5.73  | 6.27 | 6.34    | (4.30, 8.99)       |
| Arnot-Ogden             | 62    | 0      | 0.00  | 3.48 | 0.00    | (0.00,11.80)       |
| Bellevue                | 70    | 1      | 1.43  | 2.87 | 3.45    | (0.05,19.22)       |
| Beth Israel             | 470   | 32     | 6.81  | 8.01 | 5.90    | (4.03, 8.33)       |
| Buffalo General         | 466   | 32     | 6.87  | 5.37 | 8.88    | (6.07,12.53)       |
| Columbia Presbyterian   | 1097  | 71     | 6.47  | 5.76 | 7.79    | (6.08, 9.83)       |
| Ellis Hospital          | 350   | 20     | 5.71  | 6.04 | 6.57    | (4.01,10.14)       |
| Erie County             | 95    | 3      | 3.16  | 5.32 | 4.12    | (0.83,12.03)       |
| LIJ Medical Center      | 452   | 34     | 7.52  | 7.27 | 7.18    | (4.97,10.03)       |
| Lenox Hill              | 746   | 73     | 9.79  | 7.11 | 9.54 *  | (7.48,12.00)       |
| Maimonides              | 613   | 62     | 10.11 | 8.07 | 8.70    | (6.67,11.15)       |
| Mercy Hospital          | 16    | 1      | 6.25  | 4.15 | 10.46   | (0.14,58.19)       |
| Millard Fillmore        | 237   | 20     | 8.44  | 5.63 | 10.40   | (6.35,16.07)       |
| Montefiore - Einstein   | 296   | 23     | 7.77  | 6.77 | 7.96    | (5.04,11.95)       |
| Montefiore - Moses      | 373   | 26     | 6.97  | 6.33 | 7.64    | (4.99,11.20)       |
| Mount Sinai             | 541   | 36     | 6.65  | 6.76 | 6.83    | (4.78, 9.45)       |
| NY Hospital - Queens    | 257   | 11     | 4.28  | 6.48 | 4.58    | (2.28, 8.20)       |
| NYU Hospitals Center    | 1465  | 100    | 6.83  | 6.27 | 7.55    | (6.14, 9.18)       |
| North Shore             | 936   | 81     | 8.65  | 7.88 | 7.61    | (6.05, 9.46)       |
| Rochester General       | 740   | 59     | 7.97  | 7.55 | 7.33    | (5.58, 9.45)       |
| St. Elizabeth           | 295   | 21     | 7.12  | 6.81 | 7.25    | (4.48,11.08)       |
| St. Francis             | 1929  | 114    | 5.91  | 7.60 | 5.39 ** | (4.45, 6.48)       |
| St. Josephs             | 800   | 45     | 5.63  | 7.19 | 5.43    | (3.96, 7.26)       |
| St. Lukes-Roosevelt     | 273   | 18     | 6.59  | 6.60 | 6.93    | (4.11,10.96)       |
| St. Peters              | 770   | 24     | 3.12  | 6.02 | 3.59 ** | (2.30, 5.34)       |
| St. Vincents            | 320   | 36     | 11.25 | 7.94 | 9.83    | (6.88,13.60)       |
| Staten Island - North   | 128   | 5      | 3.91  | 6.41 | 4.23    | (1.36, 9.86)       |
| Strong Memorial         | 588   | 67     | 11.39 | 6.92 | 11.43 * | (8.85,14.51)       |
| United Health Services  | 255   | 17     | 6.67  | 6.33 | 7.30    | (4.25,11.69)       |
| Univ Hosp-Stony Brook   | 397   | 37     | 9.32  | 6.78 | 9.54    | (6.71,13.15)       |
| Univ. Hosp Upstate      | 395   | 35     | 8.86  | 8.07 | 7.62    | (5.30,10.59)       |
| Univ. Hosp. of Brooklyn | 179   | 15     | 8.38  | 6.14 | 9.46    | (5.29,15.60)       |
| Vassar Brothers         | 205   | 3      | 1.46  | 6.96 | 1.46 ** | (0.29, 4.26)       |
| Weill Cornell-NYP       | 1216  | 58     | 4.77  | 6.40 | 5.17 ** | (3.92, 6.68)       |
| Westchester Med. Ctr.   | 642   | 49     | 7.63  | 7.55 | 7.01    | (5.19, 9.27)       |
| Winthrop Univ. Hosp.    | 842   | 62     | 7.36  | 8.86 | 5.76    | (4.42, 7.39)       |
| Total                   | 19057 | 1322   | 6.94  | 6.94 | 6.94    |                    |

\* Risk-adjusted mortality rate significantly higher than statewide rate based on 95% confidence interval.
 \*\* Risk-adjusted mortality rate significantly lower than statewide rate based on 95% confidence interval.

| Table 4: Volume for Valve Procedures in New York State, 2000-2002 Discha | irges |
|--------------------------------------------------------------------------|-------|
|--------------------------------------------------------------------------|-------|

| Hospital                         | Aortic<br>Valve<br>Replace<br>Surgery | Aortic<br>Valve<br>and<br>CABG | Mitral<br>Valve<br>Replace<br>Surgery | Mitral<br>Replace<br>and<br>CABG | Mitral<br>Valve<br>Repair<br>Surgery | Mitral<br>Repair<br>and<br>CABG | Multiple<br>Valve<br>Replace<br>Surgery | Multiple<br>Valve<br>and<br>CABG | Total<br>Valve or<br>Valve/<br>CABG |
|----------------------------------|---------------------------------------|--------------------------------|---------------------------------------|----------------------------------|--------------------------------------|---------------------------------|-----------------------------------------|----------------------------------|-------------------------------------|
| Albany Medical Center            | 122                                   | 203                            | 37                                    | 37                               | 18                                   | 65                              | 30                                      | 29                               | 541                                 |
| Arnot-Ogden                      | 26                                    | 21                             | 3                                     | 2                                | 5                                    | 4                               | 1                                       | 0                                | 62                                  |
| Bellevue                         | 25                                    | 3                              | 11                                    | 0                                | 9                                    | 1                               | 21                                      | 0                                | 70                                  |
| Beth Israel                      | 86                                    | 101                            | 54                                    | 57                               | 32                                   | 39                              | 67                                      | 34                               | 470                                 |
| Buffalo General                  | 136                                   | 133                            | 43                                    | 40                               | 42                                   | 38                              | 19                                      | 15                               | 466                                 |
| Columbia Presbyterian-NYP        | 9 315 °                               | 239                            | 107                                   | 54                               | 140                                  | 110                             | 102                                     | 30                               | 1097                                |
| Ellis Hospital                   | 76                                    | 125                            | 26                                    | 22                               | 29                                   | 46                              | 13                                      | 13                               | 350                                 |
| Erie County                      | 25                                    | 35                             | 19                                    | 9                                | 1                                    | 1                               | 4                                       | 1                                | 95                                  |
| LIJ Medical Center               | 81                                    | 110                            | 75                                    | 38                               | 40                                   | 47                              | 29                                      | 32                               | 452                                 |
| Lenox Hill                       | 162                                   | 122                            | 75                                    | 52                               | 109                                  | 121                             | 70                                      | 35                               | 746                                 |
| Maimonides                       | 161                                   | 156                            | 65                                    | 49                               | 28                                   | 62                              | 67                                      | 25                               | 613                                 |
| Mercy Hospital                   | 6                                     | 6                              | 1                                     | 0                                | 0                                    | 2                               | 1                                       | 0                                | 16                                  |
| Millard Fillmore                 | 64                                    | 81                             | 19                                    | 18                               | 15                                   | 23                              | 9                                       | 8                                | 237                                 |
| Montefiore - Einstein            | 56                                    | 53                             | 69                                    | 40                               | 17                                   | 18                              | 35                                      | 8                                | 296                                 |
| Montefiore - Moses               | 95                                    | 85                             | 57                                    | 35                               | 17                                   | 23                              | 53                                      | 8                                | 373                                 |
| Mount Sinai                      | 119                                   | 90                             | 78                                    | 37                               | 58                                   | 49                              | 84                                      | 26                               | 541                                 |
| NYU Hospitals Center             | 411                                   | 180                            | 160                                   | 60                               | 364                                  | 73                              | 166                                     | 51                               | 1465                                |
| New York Hospital - Queen        | s 65                                  | 60                             | 33                                    | 21                               | 10                                   | 42                              | 17                                      | 9                                | 257                                 |
| North Shore                      | 272                                   | 230                            | 134                                   | 126                              | 31                                   | 47                              | 65                                      | 31                               | 936                                 |
| Rochester General                | 224                                   | 198                            | 85                                    | 60                               | 46                                   | 59                              | 48                                      | 20                               | 740                                 |
| St. Elizabeth                    | 56                                    | 94                             | 22                                    | 17                               | 25                                   | 47                              | 21                                      | 13                               | 295                                 |
| St. Francis                      | 532                                   | 553                            | 208                                   | 172                              | 80                                   | 109                             | 183                                     | 92                               | 1929                                |
| St. Josephs                      | 219                                   | 249                            | 85                                    | 80                               | 44                                   | 38                              | 53                                      | 32                               | 800                                 |
| St. Lukes-Roosevelt              | 55                                    | 59                             | 34                                    | 19                               | 25                                   | 40                              | 30                                      | 11                               | 273                                 |
| St. Peters                       | 209                                   | 207                            | 96                                    | 72                               | 45                                   | 71                              | 41                                      | 29                               | 770                                 |
| St. Vincents                     | 87                                    | 63                             | 48                                    | 43                               | 6                                    | 21                              | 34                                      | 18                               | 320                                 |
| Staten Island - North            | 21                                    | 47                             | 25                                    | 21                               | 7                                    | 3                               | 2                                       | 2                                | 128                                 |
| Strong Memorial                  | 181                                   | 136                            | 54                                    | 35                               | 45                                   | 59                              | 54                                      | 24                               | 588                                 |
| United Health Services           | 92                                    | 91                             | 27                                    | 20                               | 10                                   | 3                               | 6                                       | 6                                | 255                                 |
| Univ. Hosp Stony Brook           | 102                                   | 105                            | 39                                    | 41                               | 34                                   | 46                              | 19                                      | 11                               | 397                                 |
| Univ. Hosp Upstate               | 82                                    | 108                            | 40                                    | 36                               | 26                                   | 43                              | 45                                      | 15                               | 395                                 |
| Univ. Hosp. of Brooklyn          | 33                                    | 20                             | 33                                    | 12                               | 12                                   | 36                              | 28                                      | 5                                | 179                                 |
| Vassar Brothers                  | 41                                    | 62                             | 31                                    | 28                               | 4                                    | 27                              | 4                                       | 8                                | 205                                 |
| Weill Cornell-NYP                | 331                                   | 263                            | 206                                   | 102                              | 82                                   | 51                              | 116                                     | 65                               | 1216                                |
| Westchester Medical Center       |                                       | 175                            | 64                                    | 48                               | 38                                   | 76                              | 41                                      | 26                               | 642                                 |
| Winthrop Univ. Hosp.             | 201                                   | 241                            | 76                                    | 84                               | 19                                   | 128                             | 64                                      | 29                               | 842                                 |
|                                  | 4943                                  | 4704                           | 2239                                  | 1587                             | 1513                                 | 1668                            | 1642                                    | 761                              | 19057                               |
| State-wide Mortality<br>Rate (%) | 3.54                                  | 6.27                           | 6.79                                  | 13.93                            | 1.65                                 | 9.95                            | 9.07                                    | 18.27                            | 6.94                                |

## 2000 – 2002 HOSPITAL AND SURGEON OUTCOMES

Table 5 provides the number of Isolated CABG operations, number of CABG patients who died in the hospital, observed mortality rate, expected mortality rate, risk-adjusted mortality rate, the 95% confidence interval for the risk-adjusted mortality rate for isolated CABG patients in 2000-2002. In addition, the final two columns provide the number of Isolated CABG or Valve or Valve/CABG procedures and the risk-adjusted mortality rate for these patients in 2000-2002 for each of the 36 hospitals performing these operations during the time period. In addition, surgeons and hospitals with risk-adjusted mortality rates that are significantly lower or higher than the statewide mortality rate (as judged by the 95% confidence interval) are also noted.

The hospital information is presented for each surgeon who (a) performed 200 or more cardiac operations during 2000-2002, and/or (b) who performed at least one cardiac operation in each of the years 2000-2002. A cardiac operation is defined as any reportable cardiac operation and may include cases not listed in Tables 5 or 6.

The results for surgeons not meeting the above criteria are grouped together and reported as "All Others" in the hospital in which the operations were performed. Surgeons who met the above criteria and who performed operations in more than one hospital during 2000-2002 are noted in Table 5 and listed under hospitals in which they performed these operations.

Also, surgeons who met criterion (a) and/or criterion (b) above and have performed isolated CABG or Valve or Valve/CABG operations in two or more New York State hospitals are listed separately in Table 6. This table contains the same information as Table 5 across all hospitals in which the surgeon performed operations.

**Table 5:** Surgeon Isolated CABG and Valve Surgery (done in combination with or without CABG) Observed, Expected, and Risk-Adjusted MortalityRates in NYS, 2000 - 2002

|                       |       | Isolated CABG   |      |      |        |                    |       |       |
|-----------------------|-------|-----------------|------|------|--------|--------------------|-------|-------|
|                       | Cases | No of<br>Deaths | OMR  | EMR  | RAMR   | 95% CI<br>for RAMR | Cases | RAMR  |
| STATEWIDE TOTAL       | 51224 | 1157            | 2.26 | 2.26 | 2.26   |                    | 70281 | 3.53  |
| Albany Medical Center |       |                 |      |      |        |                    |       |       |
| Britton L             | 339   | 8               | 2.36 | 1.58 | 3.37   | (1.45, 6.65)       | 477   | 3.53  |
| ##Canavan T           | 372   | 6               | 1.61 | 1.52 | 2.39   | (0.87, 5.20)       | 435   | 4.29  |
| Canver C              | 259   | 10              | 3.86 | 2.08 | 4.20   | (2.01, 7.72)       | 340   | 4.62  |
| #Dal Col R            | 3     | 0               | 0.00 | 0.59 | 0.00   | (0.00,100.0)       | 3     | 0.00  |
| #Depan H              | 4     | 0               | 0.00 | 1.24 | 0.00   | (0.00,100.0)       | 10    | 0.00  |
| Devejian N            | 0     | 0               | 0.00 | 0.00 | 0.00   | (0.00, 0.00)       | 8     | 10.58 |
| #Kelley J             | 231   | 6               | 2.60 | 1.71 | 3.42   | (1.25, 7.45)       | 327   | 3.62  |
| ##Miller S            | 446   | 12              | 2.69 | 2.20 | 2.76   | (1.43, 4.82)       | 545   | 3.96  |
| ##Saifi J             | 4     | 0               | 0.00 | 1.24 | 0.00   | (0.00,100.0)       | 4     | 0.00  |
| #Sardella G           | 83    | 4               | 4.82 | 1.84 | 5.90   | (1.59,15.12)       | 106   | 5.01  |
| All Others            | 87    | 2               | 2.30 | 1.78 | 2.92   | (0.33,10.53)       | 114   | 6.13  |
| TOTAL                 | 1828  | 48              | 2.63 | 1.83 | 3.25 * | (2.39, 4.31)       | 2369  | 4.14  |
| Arnot-Ogden           |       |                 |      |      |        |                    |       |       |
| Curiale S V           | 196   | 3               | 1.53 | 1.58 | 2.19   | (0.44, 6.40)       | 235   | 2.49  |
| #Nast E               | 133   | 0               | 0.00 | 1.89 | 0.00   | (0.00, 3.29)       | 152   | 0.00  |
| Zama N                | 38    | 0               | 0.00 | 1.55 | 0.00   | (0.00,14.09)       | 42    | 0.00  |
| All Others            | 1     | 0               | 0.00 | 0.76 | 0.00   | (0.00,100.0)       | 1     | 0.00  |
| TOTAL                 | 368   | 3               | 0.82 | 1.69 | 1.09   | (0.22, 3.19)       | 430   | 1.27  |

Isolated CABG

|                           |       |                 |      |      |         |                    | rative of | valve/ CAB |
|---------------------------|-------|-----------------|------|------|---------|--------------------|-----------|------------|
|                           | Cases | No of<br>Deaths | OMR  | EMR  | RAMR    | 95% CI<br>for RAMR | Cases     | RAMR       |
|                           | Cases | Deatils         | OMK  | LMK  | КАРІК   |                    | Cases     | КАРІК      |
| Bellevue                  |       |                 |      |      |         |                    |           |            |
| Glassman L                | 6     | 0               | 0.00 | 1.40 | 0.00    | (0.00,98.62)       | 6         | 0.00       |
| #Grossi E                 | 18    | 0               | 0.00 | 1.06 | 0.00    | (0.00,43.35)       | 27        | 0.00       |
| #Ribakove G               | 27    | 0               | 0.00 | 1.14 | 0.00    | (0.00,26.95)       | 63        | 2.50       |
| All Others                | 90    | 0               | 0.00 | 0.88 | 0.00    | (0.00,10.43)       | 115       | 0.00       |
| TOTAL                     | 141   | 0               | 0.00 | 0.98 | 0.00    | (0.00, 6.02)       | 211       | 1.04       |
| Beth Israel               |       |                 |      |      |         |                    |           |            |
| #Geller C                 | 198   | 2               | 1.01 | 1.93 | 1.18    | (0.13, 4.26)       | 233       | 3.81       |
| Harris L                  | 312   | 4               | 1.28 | 2.20 | 1.32    | (0.35, 3.37)       | 380       | 2.51       |
| #Hoffman D                | 123   | 0               | 0.00 | 1.90 | 0.00    | (0.00, 3.55)       | 154       | 1.53       |
| #Stelzer P                | 52    | 2               | 3.85 | 1.88 | 4.62    | (0.52,16.69)       | 231       | 1.96       |
| #Tranbaugh R              | 551   | 12              | 2.18 | 1.95 | 2.53    | (1.30, 4.41)       | 701       | 3.78       |
| All Others                | 17    | 1               | 5.88 | 1.18 | 11.27   | (0.15,62.71)       | 24        | 9.31       |
| TOTAL                     | 1253  | 21              | 1.68 | 1.99 | 1.90    | (1.18, 2.91)       | 1723      | 2.99       |
| Buffalo General           |       |                 |      |      |         |                    |           |            |
| #Aldridge J               | 1     | 0               | 0.00 | 1.27 | 0.00    | (0.00,100.0)       | 1         | 0.00       |
| #Ashraf M                 | 15    | 0               | 0.00 | 1.07 | 0.00    | (0.00,51.54)       | 18        | 0.00       |
| #Bergsland J              | 166   | 10              | 6.02 | 3.15 | 4.32    | (2.07, 7.94)       | 195       | 5.91       |
| Grosner G                 | 705   | 9               | 1.28 | 1.94 | 1.49    | (0.68, 2.82)       | 1000      | 2.97       |
| ##Karamanoukian H         | 327   | 15              | 4.59 | 2.52 | 4.12 *  | (2.30, 6.79)       | 346       | 6.50 *     |
| ##Kerr P                  | 7     | 0               | 0.00 | 0.95 | 0.00    | (0.00,100.0)       | 9         | 17.12      |
| ##Lajos T                 | 77    | 4               | 5.19 | 1.87 | 6.28    | (1.69,16.08)       | 80        | 8.95       |
| #Levinsky L               | 161   | 11              | 6.83 | 2.08 | 7.44 *  | (3.71,13.31)       | 165       | 11.16 *    |
| #Lewin A                  | 445   | 13              | 2.92 | 1.82 | 3.62    | (1.93, 6.19)       | 450       | 6.72 *     |
| #Raza S                   | 414   | 13              | 3.14 | 2.03 | 3.49    | (1.86, 5.98)       | 497       | 5.31       |
| All Others                | 12    | 0               | 0.00 | 1.07 | 0.00    | (0.00,64.70)       | 35        | 2.80       |
| TOTAL                     | 2330  | 75              | 3.22 | 2.09 | 3.47 *  | (2.73, 4.35)       | 2796      | 5.11 *     |
| Columbia Presbyterian-NYP |       |                 |      |      |         |                    |           |            |
| Edwards N                 | 231   | 1               | 0.43 | 2.29 | 0.43    | (0.01, 2.38)       | 343       | 1.85       |
| Esrig B                   | 4     | 0               | 0.00 | 5.18 | 0.00    | (0.00,39.96)       | 8         | 5.95       |
| Mosca R S                 | 1     | 0               | 0.00 | 2.21 | 0.00    | (0.00,100.0)       | 12        | 10.18      |
| Naka Y                    | 263   | 9               | 3.42 | 2.34 | 3.30    | (1.50, 6.26)       | 381       | 5.75 *     |
| Oz M                      | 569   | 11              | 1.93 | 1.93 | 2.26    | (1.13, 4.05)       | 912       | 3.99       |
| Quaegebeur J              | 1     | 0               | 0.00 | 1.13 | 0.00    | (0.00,100.0)       | 13        | 8.04       |
| Rose E                    | 58    | 4               | 6.90 | 1.34 | 11.60 * | (3.12,29.70)       | 114       | 4.14       |
| Scott R                   | 1     | 0               | 0.00 | 0.30 | 0.00    | (0.00,100.0)       | 1         | 0.00       |
| Smith C                   | 451   | 12              | 2.66 | 1.44 | 4.18    | (2.16, 7.31)       | 861       | 4.25       |
| All Others                | 66    | 4               | 6.06 | 1.98 | 6.92    | (1.86,17.72)       | 97        | 5.39       |
| TOTAL                     | 1645  | 41              | 2.49 | 1.90 | 2.96    | (2.13, 4.02)       | 2742      | 4.18       |

Isolated CABG

| <b>Cases</b><br>403<br>2<br>397 | No of<br>Deaths                                                                                                                                                 | OMR                                                                                                                                   | EMR                                                                                                                                                                                                                                                                                                                                                                                                    | RAMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% CI<br>for RAMR                                    | Cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RAMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 403<br>2                        | 12                                                                                                                                                              |                                                                                                                                       | LINK                                                                                                                                                                                                                                                                                                                                                                                                   | NAPIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | Cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | KAPIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2                               |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                               |                                                                                                                                                                 | 2 00                                                                                                                                  | 1.36                                                                                                                                                                                                                                                                                                                                                                                                   | 4.93 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2.54, 8.61)                                          | 457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.60 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | 0                                                                                                                                                               | 2.98<br>0.00                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( )                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 397                             | 0                                                                                                                                                               |                                                                                                                                       | 2.48                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00,100.0)                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                               | 16                                                                                                                                                              | 4.03                                                                                                                                  | 2.31                                                                                                                                                                                                                                                                                                                                                                                                   | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2.25, 6.39)                                          | 573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.39 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                               | 0                                                                                                                                                               | 0.00                                                                                                                                  | 2.26                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00,73.36)                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 375                             | 7                                                                                                                                                               | 1.87                                                                                                                                  | 1.81                                                                                                                                                                                                                                                                                                                                                                                                   | 2.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.93, 4.79)                                          | 461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ,                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1300                            | 39                                                                                                                                                              | 3.00                                                                                                                                  | 1.89                                                                                                                                                                                                                                                                                                                                                                                                   | 3.58 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2.55, 4.89)                                          | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 313                             | 5                                                                                                                                                               | 1.60                                                                                                                                  | 1.96                                                                                                                                                                                                                                                                                                                                                                                                   | 1.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . ,                                                   | 390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 273                             | 1                                                                                                                                                               | 0.37                                                                                                                                  | 1.75                                                                                                                                                                                                                                                                                                                                                                                                   | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.01, 2.63)                                          | 283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                               | 0                                                                                                                                                               | 0.00                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00, 0.00)                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                               | 0                                                                                                                                                               | 0.00                                                                                                                                  | 0.43                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00,100.0)                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6                               | 0                                                                                                                                                               | 0.00                                                                                                                                  | 3.76                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00,36.71)                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 50                              | 0                                                                                                                                                               | 0.00                                                                                                                                  | 1.60                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00,10.34)                                          | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 644                             | 6                                                                                                                                                               | 0.93                                                                                                                                  | 1.86                                                                                                                                                                                                                                                                                                                                                                                                   | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.41, 2.47)                                          | 739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 552                             | 8                                                                                                                                                               | 1.45                                                                                                                                  | 2.16                                                                                                                                                                                                                                                                                                                                                                                                   | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.65, 2.99)                                          | 873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 45                              | 2                                                                                                                                                               | 4.44                                                                                                                                  | 1.61                                                                                                                                                                                                                                                                                                                                                                                                   | 6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.70,22.55)                                          | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 389                             | 3                                                                                                                                                               | 0.77                                                                                                                                  | 1.86                                                                                                                                                                                                                                                                                                                                                                                                   | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.19, 2.73)                                          | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2                               | 0                                                                                                                                                               | 0.00                                                                                                                                  | 1.46                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00,100.0)                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 988                             | 13                                                                                                                                                              | 1.32                                                                                                                                  | 2.01                                                                                                                                                                                                                                                                                                                                                                                                   | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.78, 2.52)                                          | 1440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 693                             | 10                                                                                                                                                              | 1.44                                                                                                                                  | 2.26                                                                                                                                                                                                                                                                                                                                                                                                   | 1.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.69, 2.65)                                          | 929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98                              | 3                                                                                                                                                               | 3.06                                                                                                                                  | 2.78                                                                                                                                                                                                                                                                                                                                                                                                   | 2.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.50, 7.27)                                          | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 36                              | 0                                                                                                                                                               | 0.00                                                                                                                                  | 2.11                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.00,10.93)                                          | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 69                              | 1                                                                                                                                                               | 1.45                                                                                                                                  | 1.28                                                                                                                                                                                                                                                                                                                                                                                                   | 2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.03,14.23)                                          | 364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 47                              | 0                                                                                                                                                               | 0.00                                                                                                                                  | 1.82                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . ,                                                   | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 171                             | 1                                                                                                                                                               | 0.58                                                                                                                                  | 1.51                                                                                                                                                                                                                                                                                                                                                                                                   | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . ,                                                   | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.82 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ,                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2003                            | 37                                                                                                                                                              | 1.85                                                                                                                                  | 2.28                                                                                                                                                                                                                                                                                                                                                                                                   | 1.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1.29, 2.52)                                          | 2749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 127                             | 2                                                                                                                                                               | 1,57                                                                                                                                  | 1.97                                                                                                                                                                                                                                                                                                                                                                                                   | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.20 6.50)                                           | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ,                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                 |                                                                                                                                                                 |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . ,                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.59 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                 | 104<br>14<br>1300<br>313<br>273<br>0<br>2<br>6<br>50<br>644<br>552<br>45<br>389<br>2<br>988<br>693<br>98<br>36<br>69<br>38<br>36<br>69<br>47<br>171<br>888<br>1 | 1044140130039313527310020605006446552845238932098813693109833606931098336069310983360693109833606931098336069310983363200337127236320 | 1044 $3.85$ $14$ 0 $0.00$ $1300$ $39$ $3.00$ $313$ 5 $1.60$ $273$ 1 $0.37$ 00 $0.00$ 20 $0.00$ 60 $0.00$ 500 $0.00$ $644$ 6 $0.93$ $552$ 8 $1.45$ $45$ 2 $4.44$ $389$ 3 $0.77$ 20 $0.00$ $988$ $13$ $1.32$ $693$ 10 $1.44$ $98$ 3 $3.06$ $36$ 0 $0.00$ $171$ 1 $0.58$ $888$ $22$ $2.48$ 10 $0.00$ $171$ 1 $0.58$ $888$ $22$ $2.48$ 10 $0.00$ $2003$ $37$ $1.85$ $127$ 2 $1.57$ $36$ 3 $8.33$ 20 $0.00$ | 1044 $3.85$ $2.48$ $14$ 0 $0.00$ $2.65$ $1300$ $39$ $3.00$ $1.89$ $313$ 5 $1.60$ $1.96$ $273$ 1 $0.37$ $1.75$ 00 $0.00$ $0.00$ 20 $0.00$ $0.00$ 20 $0.00$ $0.43$ 60 $0.00$ $3.76$ 500 $0.00$ $1.60$ 6446 $0.93$ $1.86$ 5528 $1.45$ $2.16$ $45$ 2 $4.44$ $1.61$ $389$ $3$ $0.77$ $1.86$ 20 $0.00$ $1.46$ $988$ $13$ $1.32$ $2.01$ $693$ $10$ $1.44$ $2.26$ $98$ $3$ $3.06$ $2.78$ $36$ 0 $0.00$ $2.11$ $69$ $1$ $1.45$ $1.28$ $47$ $0$ $0.00$ $1.82$ $171$ $1$ $0.58$ $1.51$ $888$ $22$ $2.48$ $2.51$ $1$ $0$ $0.00$ $1.85$ $2003$ $37$ $1.85$ $2.28$ $127$ $2$ $1.57$ $1.97$ $36$ $3$ $8.33$ $3.35$ $2$ $0$ $0.00$ $0.73$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 104       4       3.85       2.48       3.50 $(0.94, 8.96)$ 14       0       0.00       2.65       0.00 $(0.00, 22.33)$ 1300       39       3.00       1.89       3.58 * $(2.55, 4.89)$ 313       5       1.60       1.96       1.84 $(0.59, 4.29)$ 273       1       0.37       1.75       0.47 $(0.01, 2.63)$ 0       0       0.00       0.00       0.00 $(0.00, 0.00)$ 2       0       0.00       0.43       0.00 $(0.00, 10.0)$ 6       0       0.00       1.60       0.00 $(0.00, 10.34)$ 644       6       0.93       1.86       1.13 $(0.41, 2.47)$ 552       8       1.45       2.16       1.52 $(0.65, 2.99)$ 45       2       4.44       1.61       6.24 $(0.70, 22.55)$ 389       3       0.77       1.86       0.94 $(0.19, 2.73)$ 2       0       0.00       1.46       0.00 $(0.00, 10.0)$ 988       13       1.32       2.01       1.48 $(0.78, 2.52)$ < | 1044 $3.85$ $2.48$ $3.50$ $(0.94, 8.96)$ $136$ $14$ 0 $0.00$ $2.65$ $0.00$ $(0.00, 22.33)$ $16$ $1300$ $39$ $3.00$ $1.89$ $3.58 *$ $(2.55, 4.89)$ $1650$ $313$ 5 $1.60$ $1.96$ $1.84$ $(0.59, 4.29)$ $390$ $273$ 1 $0.37$ $1.75$ $0.47$ $(0.01, 2.63)$ $283$ 00 $0.00$ $0.00$ $0.00$ $(0.00, 0.00)$ $1$ 20 $0.00$ $0.43$ $0.00$ $(0.00, 10.0)$ $2$ 60 $0.00$ $3.76$ $0.00$ $(0.00, 3.6.71)$ $7$ $50$ 0 $0.00$ $1.60$ $0.00$ $(0.00, 10.34)$ $56$ 6446 $0.93$ $1.86$ $1.13$ $(0.41, 2.47)$ $739$ $552$ 8 $1.45$ $2.16$ $1.52$ $(0.65, 2.99)$ $873$ $45$ $2$ $4.44$ $1.61$ $6.24$ $(0.70, 22.55)$ $58$ $389$ $3$ $0.77$ $1.86$ $0.94$ $(0.19, 2.73)$ $507$ $2$ $0$ $0.00$ $1.44$ $2.26$ $1.44$ $(0.69, 2.65)$ $929$ $988$ $13$ $1.32$ $2.01$ $1.48$ $(0.78, 2.52)$ $1440$ $693$ $10$ $1.44$ $2.26$ $1.44$ $(0.69, 2.65)$ $929$ $988$ $3$ $3.06$ $2.78$ $2.49$ $(0.50, 7.27)$ $112$ $36$ $0$ $0.00$ $2.14$ $0.00$ |

| Isolated CABG |  |
|---------------|--|
|---------------|--|

|                       |       |                 |       |      |         | valve of valve     |       |         |  |  |
|-----------------------|-------|-----------------|-------|------|---------|--------------------|-------|---------|--|--|
|                       | Cases | No of<br>Deaths | OMR   | EMR  | RAMR    | 95% CI<br>for RAMR | Cases | RAMR    |  |  |
| Maimonides continued  |       |                 |       |      |         |                    |       |         |  |  |
| ##Genovesi M          | 24    | 4               | 16.67 | 3.99 | 9.44 *  | (2.54,24.17)       | 26    | 13.90 * |  |  |
| #Jacobowitz I         | 992   | 21              | 2.12  | 2.99 | 1.60    | (0.99, 2.45)       | 1270  | 3.16    |  |  |
| #Ketosugbo A          | 5     | 0               | 0.00  | 0.58 | 0.00    | (0.00,100.0)       | 6     | 0.00    |  |  |
| Lazzaro R             | 9     | 0               | 0.00  | 2.37 | 0.00    | (0.00,38.83)       | 11    | 0.00    |  |  |
| ##Molinaro P J        | 18    | 1               | 5.56  | 2.29 | 5.47    | (0.07,30.44)       | 21    | 7.18    |  |  |
| ##Reddy R C           | 19    | 1               | 5.26  | 1.55 | 7.66    | (0.10,42.62)       | 21    | 7.43    |  |  |
| #Sabado M             | 122   | 6               | 4.92  | 4.08 | 2.72    | (0.99, 5.92)       | 174   | 4.12    |  |  |
| Vaynblat M            | 261   | 3               | 1.15  | 2.59 | 1.00    | (0.20, 2.93)       | 312   | 1.51    |  |  |
| Zisbrod Z             | 455   | 13              | 2.86  | 2.63 | 2.45    | (1.30, 4.19)       | 554   | 5.15    |  |  |
| All Others            | 98    | 1               | 1.02  | 3.54 | 0.65    | (0.01, 3.62)       | 117   | 3.18    |  |  |
| TOTAL                 | 2340  | 64              | 2.74  | 2.84 | 2.17    | (1.67, 2.77)       | 2953  | 3.83    |  |  |
| Mercy Hospital        |       |                 |       |      |         |                    |       |         |  |  |
| All Others            | 113   | 4               | 3.54  | 2.16 | 3.70    | (0.99, 9.46)       | 129   | 5.67    |  |  |
| TOTAL                 | 113   | 4               | 3.54  | 2.16 | 3.70    | (0.99, 9.46)       | 129   | 5.67    |  |  |
| Millard Fillmore      |       |                 |       |      |         |                    |       |         |  |  |
| #Aldridge J           | 364   | 8               | 2.20  | 2.26 | 2.20    | (0.95, 4.34)       | 422   | 3.10    |  |  |
| #Ashraf M             | 687   | 4               | 0.58  | 1.75 | 0.75 ** | (0.20, 1.93)       | 806   | 2.06    |  |  |
| #Bergsland J          | 25    | 1               | 4.00  | 3.22 | 2.81    | (0.04,15.61)       | 28    | 3.76    |  |  |
| Jennings L            | 256   | 1               | 0.39  | 1.84 | 0.48    | (0.01, 2.67)       | 277   | 2.46    |  |  |
| ##Karamanoukian H     | 4     | 1               | 25.00 | 3.83 | 14.73   | (0.19,81.96)       | 4     | 23.00   |  |  |
| ##Kerr P              | 153   | 6               | 3.92  | 2.52 | 3.51    | (1.28, 7.65)       | 187   | 7.61 *  |  |  |
| ##Lajos T             | 1     | 0               | 0.00  | 0.73 | 0.00    | (0.00,100.0)       | 1     | 0.00    |  |  |
| #Levinsky L           | 26    | 0               | 0.00  | 1.21 | 0.00    | (0.00,26.33)       | 26    | 0.00    |  |  |
| #Lewin A              | 10    | 0               | 0.00  | 0.93 | 0.00    | (0.00,89.00)       | 10    | 0.00    |  |  |
| #Raza S               | 16    | 0               | 0.00  | 1.88 | 0.00    | (0.00,27.50)       | 18    | 0.00    |  |  |
| All Others            | 71    | 4               | 5.63  | 1.95 | 6.52    | (1.75,16.69)       | 71    | 10.18   |  |  |
| TOTAL                 | 1613  | 25              | 1.55  | 1.97 | 1.77    | (1.15, 2.62)       | 1850  | 3.51    |  |  |
| Montefiore - Einstein |       |                 |       |      |         |                    |       |         |  |  |
| #Camacho M            | 1     | 0               | 0.00  | 2.16 | 0.00    | (0.00,100.0)       | 12    | 7.67    |  |  |
| #Frymus M             | 357   | 3               | 0.84  | 2.15 | 0.88    | (0.18, 2.59)       | 441   | 3.09    |  |  |
| #Gold J               | 53    | 0               | 0.00  | 0.78 | 0.00    | (0.00,19.93)       | 87    | 0.00    |  |  |
| #Merav A              | 1     | 0               | 0.00  | 1.38 | 0.00    | (0.00,100.0)       | 1     | 0.00    |  |  |
| #Plestis K A          | 292   | 2               | 0.68  | 2.10 | 0.74    | (0.08, 2.66)       | 416   | 2.57    |  |  |
| ##Tortolani A         | 127   | 7               | 5.51  | 1.94 | 6.41 *  | (2.57,13.20)       | 159   | 7.69 *  |  |  |
| All Others            | 4     | 1               | 25.00 | 9.88 | 5.72    | (0.07,31.81)       | 15    | 5.04    |  |  |
| TOTAL                 | 835   | 13              | 1.56  | 2.05 | 1.72    | (0.91, 2.94)       | 1131  | 3.42    |  |  |

| Isolated | CABG |
|----------|------|
| 13010100 | CADO |

|                            |       |                 |       |       |         |                    |       | valve of valve/CADC |  |  |
|----------------------------|-------|-----------------|-------|-------|---------|--------------------|-------|---------------------|--|--|
|                            | Cases | No of<br>Deaths | OMR   | EMR   | RAMR    | 95% CI<br>for RAMR | Cases | RAMR                |  |  |
| Montefiore - Moses         |       |                 |       |       |         |                    |       |                     |  |  |
| Attai L                    | 217   | 2               | 0.92  | 1.27  | 1.64    | (0.18, 5.93)       | 308   | 1.69                |  |  |
| #Camacho M                 | 220   | 1               | 0.45  | 1.85  | 0.56    | (0.01, 3.09)       | 306   | 3.42                |  |  |
| Crooke G                   | 0     | 0               | 0.00  | 0.00  | 0.00    | (0.00, 0.00)       | 1     | 0.00                |  |  |
| #Frymus M                  | 1     | 0               | 0.00  | 1.16  | 0.00    | (0.00,100.0)       | 1     | 0.00                |  |  |
| #Gold J                    | 157   | 0               | 0.00  | 1.72  | 0.00    | (0.00, 3.06)       | 214   | 2.47                |  |  |
| #Merav A                   | 232   | 8               | 3.45  | 1.79  | 4.36    | (1.88, 8.59)       | 332   | 4.75                |  |  |
| #Plestis K A               | 67    | 0               | 0.00  | 1.66  | 0.00    | (0.00, 7.46)       | 91    | 1.19                |  |  |
| ##Tortolani A              | 1     | 0               | 0.00  | 2.72  | 0.00    | (0.00,100.0)       | 2     | 0.00                |  |  |
| All Others                 | 29    | 4               | 13.79 | 2.63  | 11.85 * | (3.19,30.35)       | 42    | 17.49 *             |  |  |
| TOTAL                      | 924   | 15              | 1.62  | 1.69  | 2.18    | (1.22, 3.59)       | 1297  | 3.69                |  |  |
| Mount Sinai                |       |                 |       |       |         |                    |       |                     |  |  |
| Galla J                    | 191   | 12              | 6.28  | 2.17  | 6.54 *  | (3.38,11.43)       | 284   | 6.47 *              |  |  |
| Griepp R                   | 29    | 0               | 0.00  | 1.74  | 0.00    | (0.00,16.38)       | 79    | 2.85                |  |  |
| Lansman S                  | 256   | 11              | 4.30  | 2.76  | 3.51    | (1.75, 6.28)       | 352   | 4.97                |  |  |
| Nguyen K                   | 1     | 0               | 0.00  | 14.03 | 0.00    | (0.00,59.07)       | 2     | 0.00                |  |  |
| Spielvogel D               | 352   | 10              | 2.84  | 2.19  | 2.93    | (1.40, 5.39)       | 504   | 3.35                |  |  |
| All Others                 | 200   | 8               | 4.00  | 1.59  | 5.70 *  | (2.45,11.23)       | 349   | 5.09                |  |  |
| TOTAL                      | 1029  | 41              | 3.98  | 2.21  | 4.07 *  | (2.92, 5.52)       | 1570  | 4.58 *              |  |  |
| NYU Hospitals Center       |       |                 |       |       |         |                    |       |                     |  |  |
| Colvin S                   | 69    | 0               | 0.00  | 2.50  | 0.00    | (0.00, 4.80)       | 657   | 3.92                |  |  |
| Culliford A                | 304   | 11              | 3.62  | 3.14  | 2.60    | (1.30, 4.66)       | 507   | 3.63                |  |  |
| #Esposito R                | 247   | 5               | 2.02  | 2.61  | 1.75    | (0.56, 4.08)       | 378   | 3.51                |  |  |
| Galloway A                 | 177   | 10              | 5.65  | 2.41  | 5.29 *  | (2.53, 9.73)       | 475   | 4.25                |  |  |
| #Grossi E                  | 99    | 6               | 6.06  | 4.06  | 3.38    | (1.23, 7.35)       | 161   | 5.35                |  |  |
| #Ribakove G                | 233   | 4               | 1.72  | 2.64  | 1.47    | (0.39, 3.75)       | 378   | 3.12                |  |  |
| All Others                 | 80    | 4               | 5.00  | 2.81  | 4.02    | (1.08,10.30)       | 118   | 6.35                |  |  |
| TOTAL                      | 1209  | 40              | 3.31  | 2.85  | 2.62    | (1.88, 3.57)       | 2674  | 3.91                |  |  |
| New York Hospital - Queens |       |                 |       |       |         |                    |       |                     |  |  |
| Aronis M                   | 378   | 6               | 1.59  | 1.57  | 2.28    | (0.83, 4.97)       | 474   | 2.86                |  |  |
| #Ko W                      | 573   | 5               | 0.87  | 1.71  | 1.15    | (0.37, 2.68)       | 715   | 2.34                |  |  |
| ##Tortolani A              | 79    | 1               | 1.27  | 2.71  | 1.05    | (0.01, 5.87)       | 98    | 0.98                |  |  |
| All Others                 | 1     | 0               | 0.00  | 0.30  | 0.00    | (0.00,100.0)       | 1     | 0.00                |  |  |
| TOTAL                      | 1031  | 12              | 1.16  | 1.74  | 1.51    | (0.78, 2.65)       | 1288  | 2.35**              |  |  |
| North Shore                |       |                 |       |       |         |                    |       |                     |  |  |
| #Esposito R                | 64    | 3               | 4.69  | 3.47  | 3.05    | (0.61, 8.92)       | 81    | 2.67                |  |  |
| Hall M                     | 733   | 13              | 1.77  | 2.74  | 1.46    | (0.78, 2.50)       | 1041  | 2.68                |  |  |
| #Hartman A                 | 55    | 2               | 3.64  | 2.62  | 3.13    | (0.35,11.32)       | 122   | 6.47                |  |  |

Valve or Valve/CABG No of 95% CI Cases Deaths OMR EMR RAMR for RAMR Cases RAMR **North Shore** continued Levy M 372 5 (0.51, 3.68)4.46 1.34 1.92 1.58 527 Pogo G 707 15 2.12 2.27 2.11 (1.18, 3.48)978 3.90 #Vatsia S 286 3 1.05 2.44 0.97 (0.19, 2.83)402 1.58 \*\* All Others 0 0 0.00 0.00 0.00 (0.00, 0.00)2 0.00 TOTAL 2217 41 1.85 2.43 1.72 (1.23, 2.33)3153 3.37 **Rochester General** Cheeran D 768 21 2.73 2.90 2.13 (1.32, 3.26)1025 3.35 Kirshner R 665 14 2.11 2.77 1.72 (0.94, 2.88)920 3.22 9 3.17 #Knight P 447 2.01 3.19 1.42 (0.65, 2.70)650 All Others 124 4 3.23 2.09 3.49 (0.94, 8.93)149 4.78 TOTAL 2004 2.40 2.87 48 1.88 (1.39, 2.50) 2744 3.33 St. Elizabeth Carr T 345 9 2.61 2.14 2.75 (1.25, 5.22)383 4.19 Hatton P 249 12 4.82 2.68 4.06 (2.10, 7.10)312 4.72 Joyce F 445 16 3.60 2.20 3.69 (2.11, 5.99)599 4.85 #Kelley J 153 6 3.92 2.77 3.20 (1.17, 6.97)186 4.51 All Others 57 1 1.75 1.64 2.41 (0.03, 13.42)64 5.57 TOTAL 1249 2.33 4.67 \* 44 3.52 3.42 \* (2.49, 4.59)1544 St. Francis Bercow N 818 33 4.03 2.84 3.21 (2.21, 4.50)1039 3.57 Colangelo R 799 17 2.13 2.61 1.84 (1.07, 2.95)1061 3.18 Damus P 0.87 \*\* 533 4 0.75 1.95 (0.23, 2.22)993 2.46 Durban L 75 2 2.67 3.15 1.91 (0.21, 6.90)94 2.40 Fernandez H A 220 8 3.64 3.15 2.61 (1.12, 5.14)250 4.05 Lamendola C 894 18 2.01 2.50 1.82 (1.08, 2.87)1150 3.14 Robinson N 733 13 1.77 1.76 2.28 (1.21, 3.90)1003 2.79 (1.03, 2.92) Taylor J 883 16 1.81 2.28 1.80 1270 2.53 All Others 167 3 1.80 1.90 2.14 (0.43, 6.25)191 3.14 TOTAL 5122 2.23 2.39 2.10 7051 2.99\*\* 114 (1.74, 2.53)St. Josephs Marvasti M 570 4 0.70 2.16 0.73 \*\* (0.20, 1.88)780 1.29\*\* #Nast E 6 2.38 (1.47, 8.78)141 4.26 4.04 181 5.56 1.10 \*\* Nazem A 625 8 1.28 2.63 (0.47, 2.17)793 1.84 \*\* Rosenberg J 596 2.57 16 2.68 2.36 (1.35, 3.83)973 3.72 All Others 38 0 0.00 2.25 0.00 (0.00, 9.70)43 0.00 TOTAL 2.63\*\* 1970 34 1.73 2.45 1.59 \*\* (1.10, 2.22)2770

**Isolated CABG** 

Isolated CABG, or

Isolated CABG

|                           | Cases | No of<br>Deaths | OMR          | EMR  | RAMR    | 95% CI<br>for RAMR | Cases      | RAMR    |
|---------------------------|-------|-----------------|--------------|------|---------|--------------------|------------|---------|
|                           | Cases | Deatils         | UNIK         | LMK  | KAPIK   |                    | Cases      | KAPIK   |
| St. Lukes-Roosevelt       |       |                 |              |      |         |                    |            |         |
| #Geller C                 | 19    | 1               | 5.26         | 2.18 | 5.45    | (0.07,30.33)       | 35         | 2.95    |
| #Hoffman D                | 17    | 0               | 0.00         | 2.23 | 0.00    | (0.00,21.81)       | 24         | 3.72    |
| Safavi A                  | 39    | 2               | 5.13         | 2.19 | 5.28    | (0.59,19.08)       | 56         | 7.48    |
| #Stelzer P                | 2     | 0               | 0.00         | 0.46 | 0.00    | (0.00,100.0)       | 22         | 1.93    |
| Swistel D                 | 481   | 11              | 2.29         | 2.64 | 1.96    | (0.98, 3.50)       | 643        | 3.54    |
| #Tranbaugh R              | 6     | 0               | 0.00         | 1.20 | 0.00    | (0.00,100.0)       | 8          | 0.00    |
| All Others                | 90    | 1               | 1.11         | 1.89 | 1.33    | (0.02, 7.39)       | 139        | 1.69    |
| TOTAL                     | 654   | 15              | 2.29         | 2.47 | 2.10    | (1.17, 3.46)       | 927        | 3.41    |
| St. Peters                |       |                 |              |      |         |                    |            |         |
| Bennett E                 | 314   | 5               | 1.59         | 1.76 | 2.04    | (0.66, 4.77)       | 594        | 2.16    |
| ##Canavan T               | 91    | 0               | 0.00         | 1.49 | 0.00    | (0.00, 6.10)       | 105        | 1.58    |
| #Dal Col R                | 530   | 8               | 1.51         | 1.39 | 2.46    | (1.06, 4.84)       | 727        | 2.09    |
| ##Miller S                | 3     | 0               | 0.00         | 3.67 | 0.00    | (0.00,75.21)       | 3          | 0.00    |
| ##Saifi J                 | 368   | 7               | 1.90         | 2.03 | 2.11    | (0.85, 4.35)       | 511        | 2.00    |
| #Sardella G               | 441   | 8               | 1.81         | 1.74 | 2.35    | (1.01, 4.63)       | 565        | 3.76    |
| All Others                | 50    | 0               | 0.00         | 1.50 | 0.00    | (0.00,11.03)       | 62         | 2.15    |
| TOTAL                     | 1797  | 28              | 1.56         | 1.68 | 2.09    | (1.39, 3.02)       | 2567       | 2.39 ** |
| St. Vincents              |       |                 |              |      |         |                    |            |         |
| Galdieri R                | 155   | 6               | 3.87         | 2.40 | 3.65    | (1.33, 7.93)       | 183        | 6.84 *  |
| Lang S                    | 488   | 15              | 3.07         | 2.22 | 3.13    | (1.75, 5.16)       | 615        | 5.23 *  |
| #McGinn J                 | 193   | 2               | 1.04         | 2.24 | 1.05    | (0.12, 3.77)       | 230        | 2.23    |
| ##Reddy R C               | 94    | 3               | 3.19         | 2.15 | 3.35    | (0.67, 9.79)       | 131        | 4.56    |
| Shin YT                   | 179   | 3               | 1.68         | 3.06 | 1.24    | (0.25, 3.62)       | 231        | 2.54    |
| Tyras D                   | 180   | 4               | 2.22         | 2.20 | 2.28    | (0.61, 5.85)       | 217        | 2.77    |
| All Others                | 34    | 3               | 8.82         | 2.74 | 7.28    | (1.46,21.28)       | 36         | 11.82   |
| TOTAL                     | 1323  | 36              | 2.72         | 2.36 | 2.60    | (1.82, 3.60)       | 1643       | 4.48    |
| Staten Island Univ- North |       |                 |              |      |         |                    |            |         |
| #McGinn J                 | 631   | 5               | 0.79         | 2.44 | 0.73 ** | (0.24, 1.71)       | 717        | 1.50 ** |
| ##Molinaro P J            | 82    | 0               | 0.00         | 1.45 | 0.00    | (0.00, 6.99)       | 106        | 1.40    |
| All Others                | 63    | 0               | 0.00         | 1.08 | 0.00    | (0.00,12.15)       | 81         | 0.00    |
| TOTAL                     | 776   | 5               | 0.00<br>0.64 | 2.23 | 0.65 ** | (0.21, 1.53)       | <b>904</b> | 1.38 ** |
|                           | 110   | 5               | 0.04         | 2.23 | 0.05    | (0.21, 1.55)       | 504        | 1.50    |
| Strong Memorial           | ,     | •               | 0.00         | 2.26 | 0.00    |                    | -          | 0.00    |
| #Alfieris G               | 4     | 0               | 0.00         | 2.26 | 0.00    | (0.00,91.77)       | 5          | 0.00    |
| Hicks G                   | 367   | 14              | 3.81         | 2.43 | 3.54    | (1.93, 5.94)       | 614        | 5.28 *  |
| #Knight P                 | 204   | 5               | 2.45         | 2.44 | 2.26    | (0.73, 5.29)       | 338        | 5.14    |
| Massey H                  | 175   | 6               | 3.43         | 3.51 | 2.20    | (0.80, 4.80)       | 241        | 3.93    |
| Risher W                  | 284   | 9               | 3.17         | 2.33 | 3.07    | (1.40, 5.83)       | 424        | 6.27 *  |
| TOTAL                     | 1034  | 34              | 3.29         | 2.59 | 2.87    | (1.99, 4.01)       | 1622       | 5.28 *  |

Valve or Valve/CABG No of 95% CI Cases Deaths OMR EMR RAMR for RAMR Cases RAMR **United Health Services** Quintos E 340 6 1.44 2.73 1.76 2.77 (0.53, 3.13)397 Wong K 331 6 1.81 2.50 1.64 (0.60, 3.57)427 2.55 Yousuf M 336 11 3.27 2.80 2.64 (1.32, 4.73)438 4.43 (1.22, 2.88) TOTAL 1007 23 2.28 2.69 1.92 1262 3.26 Univ. Hosp. - Stony Brook Bilfinger T 322 6 1.86 2.03 2.07 (0.76, 4.50)373 4.13 Krukenkamp I 358 10 2.79 2.26 2.80 (1.34, 5.14)508 4.55 9 McLarty A 270 3.33 2.01 3.75 (1.71, 7.12)304 4.68 Saltman A E 2.06 7.13 \* 229 10 4.37 4.78 \* (2.29, 8.79)268 Seifert F 686 13 1.90 1.81 2.37 (1.26, 4.05)808 4.26 All Others 0 0 0.00 0.00 0.00 (0.00, 0.00)1 0.00 TOTAL 48 1.99 2.92 4.68 \* 1865 2.57 (2.15, 3.87)2262 Univ. Hosp. - Upstate 2 #Alfieris G 16 12.50 2.25 12.53 (1.41, 45.24)2.93 53 Brandt B 256 4 2.95 (0.32, 3.06)3.04 1.56 1.20 336 Elamir N 158 4 2.37 2.41 3.06 2.53 (0.65, 6.18)217 Fink GW 281 9 3.20 2.41 3.00 (1.37, 5.70)365 4.44 1 1.95 10.37 \* Myers S 69 1.45 1.68 (0.02, 9.32)77 #Piccone V 3 0 0.00 1.75 0.00 (0.00, 100.0)3 0.00 8 Picone A 319 2.86 (0.85, 3.90)441 3.00 2.51 1.98 All Others 0 18 0.00 2.11 0.00 (0.00, 21.82)23 4.02 TOTAL 1120 28 2.50 2.62 3.63 2.16 (1.43, 3.12)1515 Univ. Hosp. of Brooklyn 24 1 #Anderson J 4.17 1.85 5.08 (0.07, 28.27)34 3.31 #Burack J 57 2 3.51 1.65 4.82 (0.54, 17.39)71 4.16 2 ##Genovesi M 55 1.44 5.69 (0.64, 20.54)67 9.05 3.64 4 #Jacobowitz I 95 4.21 2.13 4.47 (1.20, 11.44)5.73 125 #Ketosugbo A 1 1.78 5.08 54 1.85 2.36 (0.03, 13.10)63 ##Molinaro P J 0 0.00 1.06 0.00 (0.00, 100.0)0.00 1 1 0 #Piccone V 8 0.00 2.07 0.00 (0.00, 50.11)8 0.00 1 ##Reddy R C 61 1.64 1.68 2.21 (0.03, 12.29)86 6.88 #Sabado M 156 8 5.13 2.66 4.35 (1.87, 8.57)217 5.44 All Others 80 0 0.00 0.00 1.16 (0.00, 8.93)98 1.86 TOTAL 591 19 1.94 5.34 \* 3.21 3.75 (2.26, 5.86)770 Vassar Brothers Ciaburri D 358 7 1.96 1.98 2.24 (0.90, 4.61)535 1.73 \*\* Zakow P 0 0.00 \*\* 0.00 \*\* 232 0.00 1.58 (0.00, 2.26)260 TOTAL 1.41 \*\* 590 7 1.19 1.82 1.47 (0.59, 3.03)795

**Isolated CABG** 

Isolated CABG, or

|                            |       |                 |       |      |         |                    | Valve or Valve/CA |         |
|----------------------------|-------|-----------------|-------|------|---------|--------------------|-------------------|---------|
|                            | Cases | No of<br>Deaths | OMR   | EMR  | RAMR    | 95% CI<br>for RAMR | Cases             | RAMR    |
| Weill Cornell-NYP          |       |                 |       |      |         |                    |                   |         |
| Altorki N                  | 84    | 5               | 5.95  | 2.65 | 5.08    | (1.64,11.86)       | 92                | 6.83    |
| Brodman R                  | 265   | 3               | 1.13  | 1.97 | 1.30    | (0.26, 3.79)       | 330               | 1.91    |
| Girardi L                  | 811   | 9               | 1.11  | 2.12 | 1.18 ** | (0.54, 2.24)       | 1168              | 2.14 ** |
| Isom O                     | 149   | 3               | 2.01  | 1.32 | 3.45    | (0.69,10.08)       | 399               | 3.48    |
| #Ko W                      | 150   | 3               | 2.00  | 1.80 | 2.50    | (0.50, 7.32)       | 209               | 2.94    |
| Krieger K                  | 573   | 8               | 1.40  | 2.02 | 1.56    | (0.67, 3.08)       | 953               | 2.44    |
| Lamberti JJ                | 2     | 0               | 0.00  | 1.00 | 0.00    | (0.00,100.0)       | 5                 | 0.00    |
| ##Tortolani A              | 168   | 1               | 0.60  | 2.31 | 0.58    | (0.01, 3.24)       | 229               | 3.06    |
| All Others                 | 110   | 3               | 2.73  | 2.64 | 2.33    | (0.47, 6.81)       | 143               | 3.51    |
| TOTAL                      | 2312  | 35              | 1.51  | 2.06 | 1.66    | (1.15, 2.31)       | 3528              | 2.61 ** |
| Westchester Medical Center |       |                 |       |      |         |                    |                   |         |
| Axelrod H                  | 397   | 19              | 4.79  | 3.36 | 3.22    | (1.94, 5.03)       | 478               | 3.96    |
| Fleisher A                 | 356   | 16              | 4.49  | 2.38 | 4.27 *  | (2.44, 6.93)       | 464               | 6.15 *  |
| Fuzesi L                   | 39    | 7               | 17.95 | 2.69 | 15.08 * | (6.04,31.06)       | 39                | 23.54 * |
| Lafaro R                   | 173   | 1               | 0.58  | 1.80 | 0.72    | (0.01, 4.03)       | 250               | 3.49    |
| Moggio R                   | 296   | 7               | 2.36  | 2.18 | 2.45    | (0.98, 5.05)       | 432               | 3.42    |
| Sarabu M                   | 427   | 6               | 1.41  | 2.54 | 1.25    | (0.46, 2.72)       | 582               | 1.68 ** |
| Zias E                     | 430   | 10              | 2.33  | 2.28 | 2.31    | (1.10, 4.24)       | 515               | 4.29    |
| All Others                 | 1     | 0               | 0.00  | 0.32 | 0.00    | (0.00,100.0)       | 1                 | 0.00    |
| TOTAL                      | 2119  | 66              | 3.11  | 2.50 | 2.81    | (2.17, 3.58)       | 2761              | 4.00    |
| Winthrop Univ. Hosp.       |       |                 |       |      |         |                    |                   |         |
| #Hartman A                 | 330   | 5               | 1.52  | 3.03 | 1.13    | (0.36, 2.64)       | 685               | 2.50    |
| Kofsky E                   | 547   | 16              | 2.93  | 2.87 | 2.30    | (1.31, 3.74)       | 704               | 3.78    |
| Schubach S                 | 552   | 5               | 0.91  | 2.49 | 0.82 ** | (0.26, 1.91)       | 776               | 1.75 ** |
| Scott W                    | 293   | 3               | 1.02  | 2.35 | 0.99    | (0.20, 2.88)       | 367               | 2.87    |
| All Others                 | 158   | 6               | 3.80  | 2.91 | 2.95    | (1.08, 6.42)       | 190               | 3.94    |
| TOTAL                      | 1880  | 35              | 1.86  | 2.71 | 1.55 ** | (1.08, 2.16)       | 2722              | 2.72 ** |
| STATEWIDE TOTAL            | 51224 | 1157            | 2.26  | 2.26 | 2.26    |                    | 70281             | 3.53    |

**Isolated CABG** 

Isolated CABG, or Valve or Valve/CABG

\* Risk-adjusted mortality rate significantly higher than statewide rate based on 95 percent confidence interval.

\*\* Risk-adjusted mortality rate significantly lower than statewide rate based on 95 percent confidence interval.

# Performed operations in another New York State hospital.

## Performed operations in two or more other New York State hospitals.

OMR The observed mortality rate is the number of observed deaths divided by the number of patients.

EMR The expected mortality rate is the sum of the predicted probabilities of death for each patient divided by the total number of patients.

RAMR The risk-adjusted mortality rate is the best estimate, based on the statistical model, of what the provider's mortality rate would have been is the provider had a mix of patients identical to the statewide mix. It is computed as the quotient of the OMR and the EMR (OMR/EMR) multiplied by the statewide mortality rate for the time period.

|                         |       | Iso    | lated CAB | ßG   |         |                | Isolated (<br>Valve or V | -      |
|-------------------------|-------|--------|-----------|------|---------|----------------|--------------------------|--------|
|                         |       | No of  |           |      |         | 95% CI         |                          | ,      |
|                         | Cases | Deaths | OMR       | EMR  | RAMR    | for RAMR       | Cases                    | RAMR   |
| Aldridge J              | 365   | 8      | 2.19      | 2.25 | 2.20    | (0.95, 4.33)   | 423                      | 3.10   |
| Buffalo General         | 1     | 0      | 0.00      | 1.27 | 0.00    | (0.00,100.0)   | 1                        | 0.00   |
| Millard Fillmore        | 364   | 8      | 2.20      | 2.26 | 2.20    | (0.95, 4.34)   | 422                      | 3.10   |
| Alfieris G              | 20    | 2      | 10.00     | 2.25 | 10.02   | (1.13,36.18)   | 58                       | 2.73   |
| Strong Memorial         | 4     | 0      | 0.00      | 2.26 | 0.00    | (0.00,91.77)   | 5                        | 0.00   |
| Univ. Hosp Upstate      | 16    | 2      | 12.50     | 2.25 | 12.53   | (1.41,45.24)   | 53                       | 2.93   |
| Anderson J              | 60    | 4      | 6.67      | 2.75 | 5.47    | (1.47,14.02)   | 78                       | 5.02   |
| Maimonides              | 36    | 3      | 8.33      | 3.35 | 5.62    | (1.13,16.42)   | 44                       | 6.07   |
| Univ. Hosp. of Brooklyn | 24    | 1      | 4.17      | 1.85 | 5.08    | (0.07,28.27)   | 34                       | 3.31   |
| Ashraf M                | 702   | 4      | 0.57      | 1.73 | 0.74 ** | * (0.20, 1.90) | 824                      | 2.02   |
| Buffalo General         | 15    | 0      | 0.00      | 1.07 | 0.00    | (0.00,51.54)   | 18                       | 0.00   |
| Millard Fillmore        | 687   | 4      | 0.58      | 1.75 | 0.75 ** | (0.20, 1.93)   | 806                      | 2.06   |
| Bergsland J             | 191   | 11     | 5.76      | 3.16 | 4.12    | (2.05, 7.37)   | 223                      | 5.65   |
| Buffalo General         | 166   | 10     | 6.02      | 3.15 | 4.32    | (2.07, 7.94)   | 195                      | 5.91   |
| Millard Fillmore        | 25    | 1      | 4.00      | 3.22 | 2.81    | (0.04,15.61)   | 28                       | 3.76   |
| Burack J                | 59    | 2      | 3.39      | 1.61 | 4.74    | (0.53,17.13)   | 74                       | 3.96   |
| Maimonides              | 2     | 0      | 0.00      | 0.73 | 0.00    | (0.00,100.0)   | 3                        | 0.00   |
| Univ. Hosp. of Brooklyn | 57    | 2      | 3.51      | 1.65 | 4.82    | (0.54,17.39)   | 71                       | 4.16   |
| Camacho M               | 221   | 1      | 0.45      | 1.85 | 0.55    | (0.01, 3.08)   | 318                      | 3.62   |
| Montefiore - Einstein   | 1     | 0      | 0.00      | 2.16 | 0.00    | (0.00,100.0)   | 12                       | 7.67   |
| Montefiore - Moses      | 220   | 1      | 0.45      | 1.85 | 0.56    | (0.01, 3.09)   | 306                      | 3.42   |
| Canavan T               | 465   | 6      | 1.29      | 1.52 | 1.91    | (0.70, 4.17)   | 542                      | 3.73   |
| Albany Medical Center   | 372   | 6      | 1.61      | 1.52 | 2.39    | (0.87, 5.20)   | 435                      | 4.29   |
| Ellis Hospital          | 2     | 0      | 0.00      | 2.48 | 0.00    | (0.00,100.0)   | 2                        | 0.00   |
| St. Peters              | 91    | 0      | 0.00      | 1.49 | 0.00    | (0.00, 6.10)   | 105                      | 1.58   |
| Dal Col R               | 533   | 8      | 1.50      | 1.38 | 2.45    | (1.05, 4.83)   | 730                      | 2.08   |
| Albany Medical Center   | 3     | 0      | 0.00      | 0.59 | 0.00    | (0.00,100.0)   | 3                        | 0.00   |
| St. Peters              | 530   | 8      | 1.51      | 1.39 | 2.46    | (1.06, 4.84)   | 727                      | 2.09   |
| Depan H                 | 401   | 16     | 3.99      | 2.30 | 3.91    | (2.24, 6.36)   | 583                      | 5.29 * |
| Albany Medical Center   | 4     | 0      | 0.00      | 1.24 | 0.00    | (0.00,100.0)   | 10                       | 0.00   |
| Ellis Hospital          | 397   | 16     | 4.03      | 2.31 | 3.94    | (2.25, 6.39)   | 573                      | 5.39 * |
| Esposito R              | 311   | 8      | 2.57      | 2.79 | 2.08    | (0.90, 4.10)   | 459                      | 3.35   |
| NYU Hospitals Center    | 247   | 5      | 2.02      | 2.61 | 1.75    | (0.56, 4.08)   | 378                      | 3.51   |
| North Shore             | 64    | 3      | 4.69      | 3.47 | 3.05    | (0.61, 8.92)   | 81                       | 2.67   |
| Frymus M                | 358   | 3      | 0.84      | 2.14 | 0.88    | (0.18, 2.58)   | 442                      | 3.09   |
| Montefiore - Einstein   | 357   | 3      | 0.84      | 2.15 | 0.88    | (0.18, 2.59)   | 441                      | 3.09   |
| Montefiore - Moses      | 1     | 0      | 0.00      | 1.16 | 0.00    | (0.00,100.0)   | 1                        | 0.00   |

|                         |       | Iso             | lated CAE | 3G   |        | Isolated CABG, or<br>Valve or Valve/CABG |       |         |
|-------------------------|-------|-----------------|-----------|------|--------|------------------------------------------|-------|---------|
|                         | Cases | No of<br>Deaths | OMR       | EMR  | RAMR   | 95% CI<br>for RAMR                       | Cases | RAMR    |
| Geller C                | 217   | 3               | 1.38      | 1.95 | 1.60   | (0.32, 4.67)                             | 268   | 3.68    |
| Beth Israel             | 198   | 2               | 1.01      | 1.93 | 1.18   | (0.13, 4.26)                             | 233   | 3.81    |
| St. Lukes-Roosevelt     | 19    | 1               | 5.26      | 2.18 | 5.45   | (0.07,30.33)                             | 35    | 2.95    |
| Genovesi M              | 115   | 6               | 5.22      | 2.18 | 5.40   | (1.97,11.76)                             | 133   | 8.32 *  |
| Lenox Hill              | 36    | 0               | 0.00      | 2.11 | 0.00   | (0.00,10.93)                             | 40    | 2.85    |
| Maimonides              | 24    | 4               | 16.67     | 3.99 | 9.44 * | (2.54,24.17)                             | 26    | 13.90 * |
| Univ. Hosp. of Brooklyn | 55    | 2               | 3.64      | 1.44 | 5.69   | (0.64,20.54)                             | 67    | 9.05    |
| Gold J                  | 210   | 0               | 0.00      | 1.49 | 0.00   | (0.00, 2.65)                             | 301   | 1.80    |
| Montefiore - Einstein   | 53    | 0               | 0.00      | 0.78 | 0.00   | (0.00,19.93)                             | 87    | 0.00    |
| Montefiore - Moses      | 157   | 0               | 0.00      | 1.72 | 0.00   | (0.00, 3.06)                             | 214   | 2.47    |
| Grossi E                | 117   | 6               | 5.13      | 3.59 | 3.22   | (1.18, 7.01)                             | 188   | 5.15    |
| Bellevue                | 18    | 0               | 0.00      | 1.06 | 0.00   | (0.00,43.35)                             | 27    | 0.00    |
| NYU Hospitals Center    | 99    | 6               | 6.06      | 4.06 | 3.38   | (1.23, 7.35)                             | 161   | 5.35    |
| Hartman A               | 385   | 7               | 1.82      | 2.97 | 1.38   | (0.55, 2.85)                             | 807   | 3.02    |
| North Shore             | 55    | 2               | 3.64      | 2.62 | 3.13   | (0.35,11.32)                             | 122   | 6.47    |
| Winthrop Univ. Hosp.    | 330   | 5               | 1.52      | 3.03 | 1.13   | (0.36, 2.64)                             | 685   | 2.50    |
| Hoffman D               | 140   | 0               | 0.00      | 1.94 | 0.00   | (0.00, 3.05)                             | 178   | 1.90    |
| Beth Israel             | 123   | 0               | 0.00      | 1.90 | 0.00   | (0.00, 3.55)                             | 154   | 1.53    |
| St. Lukes-Roosevelt     | 17    | 0               | 0.00      | 2.23 | 0.00   | (0.00,21.81)                             | 24    | 3.72    |
| Jacobowitz I            | 1087  | 25              | 2.30      | 2.91 | 1.78   | (1.15, 2.63)                             | 1395  | 3.35    |
| Maimonides              | 992   | 21              | 2.12      | 2.99 | 1.60   | (0.99, 2.45)                             | 1270  | 3.16    |
| Univ. Hosp. of Brooklyn | 95    | 4               | 4.21      | 2.13 | 4.47   | (1.20,11.44)                             | 125   | 5.73    |
| Karamanoukian H L       | 331   | 16              | 4.83      | 2.53 | 4.31 * | (2.46, 7.00)                             | 351   | 6.72 *  |
| Buffalo General         | 327   | 15              | 4.59      | 2.52 | 4.12 * | (2.30, 6.79)                             | 346   | 6.50 *  |
| Erie County             | 0     | 0               | 0.00      | 0.00 | 0.00   | (0.00, 0.00)                             | 1     | 0.00    |
| Millard Fillmore        | 4     | 1               | 25.00     | 3.83 | 14.73  | (0.19,81.96)                             | 4     | 23.00   |
| Kelley J                | 384   | 12              | 3.13      | 2.13 | 3.31   | (1.71, 5.78)                             | 513   | 3.97    |
| Albany Medical Center   | 231   | 6               | 2.60      | 1.71 | 3.42   | (1.25, 7.45)                             | 327   | 3.62    |
| St. Elizabeth           | 153   | 6               | 3.92      | 2.77 | 3.20   | (1.17, 6.97)                             | 186   | 4.51    |
| Kerr P                  | 162   | 6               | 3.70      | 2.43 | 3.45   | (1.26, 7.50)                             | 198   | 7.89 *  |
| Buffalo General         | 7     | 0               | 0.00      | 0.95 | 0.00   | (0.00,100.0)                             | 9     | 17.12   |
| Erie County             | 2     | 0               | 0.00      | 0.43 | 0.00   | (0.00,100.0)                             | 2     | 0.00    |
| Millard Fillmore        | 153   | 6               | 3.92      | 2.52 | 3.51   | (1.28, 7.65)                             | 187   | 7.61 *  |
| Ketosugbo A             | 59    | 1               | 1.69      | 1.67 | 2.29   | (0.03,12.72)                             | 69    | 4.51    |
| Maimonides              | 5     | 0               | 0.00      | 0.58 | 0.00   | (0.00,100.0)                             | 6     | 0.00    |
| Univ. Hosp. of Brooklyn | 54    | 1               | 1.85      | 1.78 | 2.36   | (0.03,13.10)                             | 63    | 5.08    |

|                          |       | Iso             | lated CAE | G    |         | Isolated CABG, or<br>Valve or Valve/CABG |       |         |
|--------------------------|-------|-----------------|-----------|------|---------|------------------------------------------|-------|---------|
|                          | Cases | No of<br>Deaths | OMR       | EMR  | RAMR    | 95% CI<br>for RAMR                       | Cases | RAMR    |
| Knight P                 | 651   | 14              | 2.15      | 2.96 | 1.64    | (0.90, 2.75)                             | 988   | 3.80    |
| Rochester General        | 447   | 9               | 2.01      | 3.19 | 1.42    | (0.65, 2.70)                             | 650   | 3.17    |
| Strong Memorial          | 204   | 5               | 2.45      | 2.44 | 2.26    | (0.73, 5.29)                             | 338   | 5.14    |
| Ko W                     | 723   | 8               | 1.11      | 1.73 | 1.44    | (0.62, 2.84)                             | 924   | 2.47    |
| NY Hospital-Queens       | 573   | 5               | 0.87      | 1.71 | 1.15    | (0.37, 2.68)                             | 715   | 2.34    |
| Weill Cornell-NYP        | 150   | 3               | 2.00      | 1.80 | 2.50    | (0.50, 7.32)                             | 209   | 2.94    |
| Lajos T                  | 84    | 4               | 4.76      | 1.99 | 5.40    | (1.45,13.84)                             | 88    | 8.55    |
| Buffalo General          | 77    | 4               | 5.19      | 1.87 | 6.28    | (1.69,16.08)                             | 80    | 8.95    |
| Erie County              | 6     | 0               | 0.00      | 3.76 | 0.00    | (0.00,36.71)                             | 7     | 7.39    |
| Millard Fillmore         | 1     | 0               | 0.00      | 0.73 | 0.00    | (0.00,100.0)                             | 1     | 0.00    |
| Levinsky L               | 187   | 11              | 5.88      | 1.95 | 6.80 *  | (3.39,12.16)                             | 191   | 10.30 * |
| Buffalo General          | 161   | 11              | 6.83      | 2.08 | 7.44 *  | (3.71,13.31)                             | 165   | 11.16 * |
| Millard Fillmore         | 26    | 0               | 0.00      | 1.21 | 0.00    | (0.00,26.33)                             | 26    | 0.00    |
| Lewin A                  | 455   | 13              | 2.86      | 1.80 | 3.58    | (1.90, 6.12)                             | 460   | 6.64 *  |
| Buffalo General          | 445   | 13              | 2.92      | 1.82 | 3.62    | (1.93, 6.19)                             | 450   | 6.72 *  |
| Millard Fillmore         | 10    | 0               | 0.00      | 0.93 | 0.00    | (0.00,89.00)                             | 10    | 0.00    |
| McGinn J                 | 824   | 7               | 0.85      | 2.39 | 0.80 ** | (0.32, 1.65)                             | 947   | 1.67 ** |
| St. Vincents             | 193   | 2               | 1.04      | 2.24 | 1.05    | (0.12, 3.77)                             | 230   | 2.23    |
| Staten Island Univ- Nort | h 631 | 5               | 0.79      | 2.44 | 0.73 ** | (0.24, 1.71)                             | 717   | 1.50 ** |
| Merav A                  | 233   | 8               | 3.43      | 1.79 | 4.34    | (1.87, 8.56)                             | 333   | 4.75    |
| Montefiore - Einstein    | 1     | 0               | 0.00      | 1.38 | 0.00    | (0.00,100.0)                             | 1     | 0.00    |
| Montefiore - Moses       | 232   | 8               | 3.45      | 1.79 | 4.36    | (1.88, 8.59)                             | 332   | 4.75    |
| Miller S                 | 454   | 12              | 2.64      | 2.21 | 2.70    | (1.39, 4.72)                             | 553   | 3.91    |
| Albany Medical Center    | 446   | 12              | 2.69      | 2.20 | 2.76    | (1.43, 4.82)                             | 545   | 3.96    |
| Ellis Hospital           | 5     | 0               | 0.00      | 2.26 | 0.00    | (0.00,73.36)                             | 5     | 0.00    |
| St. Peters               | 3     | 0               | 0.00      | 3.67 | 0.00    | (0.00,75.21)                             | 3     | 0.00    |
| Molinaro P J             | 101   | 1               | 0.99      | 1.59 | 1.40    | (0.02, 7.81)                             | 128   | 2.34    |
| Maimonides               | 18    | 1               | 5.56      | 2.29 | 5.47    | (0.07,30.44)                             | 21    | 7.18    |
| Staten Island Univ- Nort | h 82  | 0               | 0.00      | 1.45 | 0.00    | (0.00, 6.99)                             | 106   | 1.40    |
| Univ. Hosp. of Brooklyn  | 1     | 0               | 0.00      | 1.06 | 0.00    | (0.00,100.0)                             | 1     | 0.00    |
| Nast E                   | 274   | 6               | 2.19      | 2.15 | 2.31    | (0.84, 5.02)                             | 333   | 3.48    |
| Arnot-Ogden              | 133   | 0               | 0.00      | 1.89 | 0.00    | (0.00, 3.29)                             | 152   | 0.00    |
| St. Josephs              | 141   | 6               | 4.26      | 2.38 | 4.04    | (1.47, 8.78)                             | 181   | 5.56    |
| Piccone V                | 11    | 0               | 0.00      | 1.98 | 0.00    | (0.00,38.03)                             | 11    | 0.00    |
| Univ. Hosp Upstate       | 3     | 0               | 0.00      | 1.75 | 0.00    | (0.00,100.0)                             | 3     | 0.00    |
| Univ. Hosp. of Brooklyn  | 8     | 0               | 0.00      | 2.07 | 0.00    | (0.00,50.11)                             | 8     | 0.00    |

|                         |       | Iso             | lated CAB | G    |         | Isolated CAB<br>Valve or Valve |       |         |
|-------------------------|-------|-----------------|-----------|------|---------|--------------------------------|-------|---------|
|                         | Cases | No of<br>Deaths | OMR       | EMR  | RAMR    | 95% CI<br>for RAMR             | Cases | RAMR    |
| Plestis K A             | 359   | 2               | 0.56      | 2.02 | 0.62 ** | (0.07,2.25)                    | 507   | 2.32    |
| Montefiore - Einstein   | 292   | 2               | 0.68      | 2.10 | 0.74    | (0.08, 2.66)                   | 416   | 2.57    |
| Montefiore - Moses      | 67    | 0               | 0.00      | 1.66 | 0.00    | (0.00, 7.46)                   | 91    | 1.19    |
| Raza S                  | 430   | 13              | 3.02      | 2.02 | 3.37    | (1.79,5.77)                    | 515   | 5.16    |
| Buffalo General         | 414   | 13              | 3.14      | 2.03 | 3.49    | (1.86, 5.98)                   | 497   | 5.31    |
| Millard Fillmore        | 16    | 0               | 0.00      | 1.88 | 0.00    | (0.00,27.50)                   | 18    | 0.00    |
| Reddy R C               | 174   | 5               | 2.87      | 1.92 | 3.38    | (1.09,7.89)                    | 238   | 5.52    |
| Maimonides              | 19    | 1               | 5.26      | 1.55 | 7.66    | (0.10,42.62)                   | 21    | 7.43    |
| St. Vincents            | 94    | 3               | 3.19      | 2.15 | 3.35    | (0.67, 9.79)                   | 131   | 4.56    |
| Univ. Hosp. of Brooklyn | 61    | 1               | 1.64      | 1.68 | 2.21    | (0.03,12.29)                   | 86    | 6.88    |
| Ribakove G              | 260   | 4               | 1.54      | 2.49 | 1.40    | (0.38, 3.58)                   | 441   | 3.08    |
| Bellevue                | 27    | 0               | 0.00      | 1.14 | 0.00    | (0.00,26.95)                   | 63    | 2.50    |
| NYU Hospitals Center    | 233   | 4               | 1.72      | 2.64 | 1.47    | (0.39, 3.75)                   | 378   | 3.12    |
| Sabado M                | 278   | 14              | 5.04      | 3.29 | 3.46    | (1.89,5.81)                    | 391   | 4.69    |
| Maimonides              | 122   | 6               | 4.92      | 4.08 | 2.72    | (0.99, 5.92)                   | 174   | 4.12    |
| Univ. Hosp. of Brooklyn | 156   | 8               | 5.13      | 2.66 | 4.35    | (1.87, 8.57)                   | 217   | 5.44    |
| Saifi J                 | 476   | 11              | 2.31      | 2.12 | 2.46    | (1.22,4.40)                    | 651   | 2.12 ** |
| Albany Medical Center   | 4     | 0               | 0.00      | 1.24 | 0.00    | (0.00,100.0)                   | 4     | 0.00    |
| Ellis Hospital          | 104   | 4               | 3.85      | 2.48 | 3.50    | (0.94, 8.96)                   | 136   | 2.59    |
| St. Peters              | 368   | 7               | 1.90      | 2.03 | 2.11    | (0.85, 4.35)                   | 511   | 2.00    |
| Sardella G              | 524   | 12              | 2.29      | 1.76 | 2.94    | (1.52,5.14)                    | 671   | 3.99    |
| Albany Medical Center   | 83    | 4               | 4.82      | 1.84 | 5.90    | (1.59,15.12)                   | 106   | 5.01    |
| St. Peters              | 441   | 8               | 1.81      | 1.74 | 2.35    | (1.01, 4.63)                   | 565   | 3.76    |
| Stelzer P               | 54    | 2               | 3.70      | 1.83 | 4.58    | (0.51,16.54)                   | 253   | 1.95    |
| Beth Israel             | 52    | 2               | 3.85      | 1.88 | 4.62    | (0.52,16.69)                   | 231   | 1.96    |
| St. Lukes-Roosevelt     | 2     | 0               | 0.00      | 0.46 | 0.00    | (0.00,100.0)                   | 22    | 1.93    |
| Tortolani A             | 375   | 9               | 2.40      | 2.27 | 2.39    | (1.09,4.53)                    | 488   | 3.89    |
| Montefiore - Einstein   | 127   | 7               | 5.51      | 1.94 | 6.41 *  | (2.57,13.20)                   | 159   | 7.69 *  |
| Montefiore - Moses      | 1     | 0               | 0.00      | 2.72 | 0.00    | (0.00,100.0)                   | 2     | 0.00    |
| NY Hospital - Queens    | 79    | 1               | 1.27      | 2.71 | 1.05    | (0.01, 5.87)                   | 98    | 0.98    |
| Weill Cornell-NYP       | 168   | 1               | 0.60      | 2.31 | 0.58    | (0.01, 3.24)                   | 229   | 3.06    |
| Franbaugh R             | 557   | 12              | 2.15      | 1.94 | 2.51    | (1.30,4.38)                    | 709   | 3.75    |
| Beth Israel             | 551   | 12              | 2.18      | 1.95 | 2.53    | (1.30, 4.41)                   | 701   | 3.78    |
| St. Lukes-Roosevelt     | 6     | 0               | 0.00      | 1.20 | 0.00    | (0.00,100.0)                   | 8     | 0.00    |
| Vatsia S                | 288   | 3               | 1.04      | 2.44 | 0.97    | (0.19,2.82)                    | 404   | 1.58 ** |
| LIJ Medical Center      | 2     | 0               | 0.00      | 1.46 | 0.00    | (0.00,100.0)                   | 2     | 0.00    |
|                         |       |                 |           |      |         |                                |       |         |

# SURGEON AND HOSPITAL VOLUMES FOR TOTAL ADULT CARDIAC SURGERY, 2000-2002

Table 7 presents, for each hospital and for each surgeon performing at least 200 cardiac operations in any hospital in 2000 – 2002 and/or performing one or more cardiac operations in each of the years 2000 – 2002, the total number of isolated CABG surgeries, the total number of Valve or Valve/CABG operations, the total number of other cardiac operations, and total cardiac operations. As in Table 5, results for surgeons not meeting the above criteria are grouped together in an "All Others" category.

Isolated CABG volumes include patients who undergo bypass of one or more of the coronary arteries with no other major heart surgery during the same admission. Valve or Valve/CABG volumes include the total number of cases for the eight Valve or Valve/CABG groups that were identified in Table 4. Other cardiac surgery includes cardiac procedures not represented by isolated CABG or Valve or Valve/CABG operations and includes, but is not limited to: congenital procedures, heart transplants, aneurysm repairs, ventricular reconstruction, and ventricular assist device insertions. Total cardiac surgery is the sum of the previous three columns and includes any procedure to the heart or great vessels.

 Table 7: Surgeon and Hospital Volume for Isolated CABG, Valve or Valve/CABG, Other Cardiac Surgery, and Total Adult Cardiac Surgery, 2000-2002

|                       | Isolated<br>CABG | Valve or<br>Valve/CABG | Other<br>Cardiac<br>Surgery | Total<br>Cardiac<br>Surgery |
|-----------------------|------------------|------------------------|-----------------------------|-----------------------------|
| Albany Medical Center |                  |                        |                             |                             |
| Britton L             | 339              | 138                    | 50                          | 527                         |
| Canavan T             | 372              | 63                     | 7                           | 442                         |
| Canver C              | 259              | 81                     | 95                          | 435                         |
| Dal Col R             | 3                | 0                      | 0                           | 3                           |
| Depan H               | 4                | 6                      | 0                           | 10                          |
| Devejian N            | 0                | 8                      | 31                          | 39                          |
| Kelley J              | 231              | 96                     | 70                          | 397                         |
| Miller S              | 446              | 99                     | 22                          | 567                         |
| Saifi J               | 4                | 0                      | 1                           | 5                           |
| Sardella G            | 83               | 23                     | 3                           | 109                         |
| All Others            | 87               | 27                     | 17                          | 131                         |
| TOTAL                 | 1828             | 541                    | 296                         | 2665                        |
| Arnot-Ogden           |                  |                        |                             |                             |
| Curiale S V           | 196              | 39                     | 12                          | 247                         |
| Nast E                | 133              | 19                     | 6                           | 158                         |
| Zama N                | 38               | 4                      | 0                           | 42                          |
| All Others            | 1                | 0                      | 1                           | 2                           |
| TOTAL                 | 368              | 62                     | 19                          | 449                         |
| Bellevue              |                  |                        |                             |                             |
| Glassman L            | 6                | 0                      | 1                           | 7                           |
| Grossi E              | 18               | 9                      | 4                           | 31                          |

|                           | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardia<br>Surgery |
|---------------------------|------------------|------------------------|--------------------------|-------------------------|
| Bellevue continued        |                  |                        |                          |                         |
| Ribakove G                | 27               | 36                     | 16                       | 79                      |
| All Others                | 90               | 25                     | 27                       | 142                     |
| TOTAL                     | 141              | 70                     | 48                       | 259                     |
| Beth Israel               |                  |                        |                          |                         |
| Geller C                  | 198              | 35                     | 18                       | 251                     |
| Harris L                  | 312              | 68                     | 13                       | 393                     |
| Hoffman D                 | 123              | 31                     | 6                        | 160                     |
| Stelzer P                 | 52               | 179                    | 146                      | 377                     |
| Tranbaugh R               | 551              | 150                    | 48                       | 749                     |
| All Others                | 17               | 7                      | 0                        | 24                      |
| TOTAL                     | 1253             | 470                    | 231                      | 1954                    |
| Suffalo General           |                  |                        |                          |                         |
| Aldridge J                | 1                | 0                      | 0                        | 1                       |
| Ashraf M                  | 15               | 3                      | 0                        | 18                      |
| Bergsland J               | 166              | 29                     | 7                        | 202                     |
| Grosner G                 | 705              | 295                    | 49                       | 1049                    |
| Karamanoukian H L         | 327              | 19                     | 21                       | 367                     |
| Kerr P                    | 7                | 2                      | 6                        | 15                      |
| Lajos T                   | 77               | 3                      | 8                        | 88                      |
| Levinsky L                | 161              | 4                      | 5                        | 170                     |
| Lewin A                   | 445              | 5                      | 4                        | 454                     |
| Raza S                    | 414              | 83                     | 64                       | 561                     |
| All Others                | 12               | 23                     | 7                        | 42                      |
| TOTAL                     | 2330             | 466                    | 171                      | 2967                    |
| Columbia Presbyterian-NYP |                  |                        |                          |                         |
| Edwards N                 | 231              | 112                    | 94                       | 437                     |
| Esrig B                   | 4                | 4                      | 34                       | 42                      |
| Mosca R S                 | 1                | 11                     | 30                       | 42                      |
| Naka Y                    | 263              | 118                    | 195                      | 576                     |
| Oz M                      | 569              | 343                    | 142                      | 1054                    |
| Quaegebeur J              | 1                | 12                     | 89                       | 102                     |
| Rose E                    | 58               | 56                     | 14                       | 128                     |
| Scott R                   | 1                | 0                      | 21                       | 22                      |
| Smith C                   | 451              | 410                    | 140                      | 1001                    |
| All Others                | 66               | 31                     | 144                      | 241                     |
| TOTAL                     | 1645             | 1097                   | 903                      | 3645                    |
| Ellis Hospital            |                  |                        |                          |                         |
| Afifi A                   | 403              | 54                     | 6                        | 463                     |
| Canavan T                 | 2                | 0                      | 0                        | 2                       |
| Depan H                   | 397              | 176                    | 67                       | 640                     |

|                          | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardiad<br>Surgery |
|--------------------------|------------------|------------------------|--------------------------|--------------------------|
| Ellis Hospital continued |                  |                        |                          |                          |
| Miller S                 | 5                | 0                      | 0                        | 5                        |
| Reich H                  | 375              | 86                     | 16                       | 477                      |
| Saifi J                  | 104              | 32                     | 7                        | 143                      |
| All Others               | 14               | 2                      | 1                        | 17                       |
| TOTAL                    | 1300             | 350                    | 97                       | 1747                     |
| Frie County              |                  |                        |                          |                          |
| Bell-Thomson J           | 313              | 77                     | 25                       | 415                      |
| Datta S                  | 273              | 10                     | 18                       | 301                      |
| Karamanoukian H L        | 0                | 1                      | 1                        | 2                        |
| Kerr P                   | 2                | 0                      | 0                        | 2                        |
| Lajos T                  | 6                | 1                      | 2                        | 9                        |
| All Others               | 50               | 6                      | 11                       | 67                       |
| TOTAL                    | 644              | 95                     | 57                       | 796                      |
| LIJ Medical Center       |                  |                        |                          |                          |
| Graver L                 | 552              | 321                    | 86                       | 959                      |
| Kline G                  | 45               | 13                     | 17                       | 75                       |
| Palazzo R                | 389              | 118                    | 18                       | 525                      |
| Vatsia S                 | 2                | 0                      | 0                        | 2                        |
| All Others               | 0                | 0                      | 4                        | 4                        |
| TOTAL                    | 988              | 452                    | 125                      | 1565                     |
| Lenox Hill               |                  |                        |                          |                          |
| Connolly M               | 693              | 236                    | 57                       | 986                      |
| Fonger J D               | 98               | 14                     | 5                        | 117                      |
| Genovesi M               | 36               | 4                      | 2                        | 42                       |
| Loulmet D F              | 69               | 295                    | 61                       | 425                      |
| McCabe J                 | 47               | 15                     | 12                       | 74                       |
| Patel N                  | 171              | 11                     | 1                        | 183                      |
| Subramanian V            | 888              | 171                    | 30                       | 1089                     |
| All Others               | 1                | 0                      | 0                        | 1                        |
| TOTAL                    | 2003             | 746                    | 168                      | 2917                     |
| Maimonides               |                  |                        |                          |                          |
| Acinapura A              | 127              | 38                     | 14                       | 179                      |
| Anderson J               | 36               | 8                      | 5                        | 49                       |
| Burack J                 | 2                | 1                      | 1                        | 4                        |
| Cunningham J N           | 172              | 57                     | 17                       | 246                      |
| Genovesi M               | 24               | 2                      | 3                        | 29                       |
| Jacobowitz I             | 992              | 278                    | 50                       | 1320                     |
| Ketosugbo A              | 5                | 1                      | 2                        | 8                        |
| Lazzaro R                | 9                | 2                      | 7                        | 18                       |
| Molinaro P J             | 18               | 3                      | 1                        | 22                       |

|                       | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardiad<br>Surgery |
|-----------------------|------------------|------------------------|--------------------------|--------------------------|
| Maimonides continued  |                  |                        |                          |                          |
| Reddy R C             | 19               | 2                      | 0                        | 21                       |
| Sabado M              | 122              | 52                     | 18                       | 192                      |
| Vaynblat M            | 261              | 51                     | 6                        | 318                      |
| Zisbrod Z             | 455              | 99                     | 21                       | 575                      |
| All Others            | 98               | 19                     | 19                       | 136                      |
| TOTAL                 | 2340             | 613                    | 164                      | 3117                     |
| lercy Hospital        |                  |                        |                          |                          |
| All Others            | 113              | 16                     | 14                       | 143                      |
| TOTAL                 | 113              | 16                     | 14                       | 143                      |
| Millard Fillmore      |                  |                        |                          |                          |
| Aldridge J            | 364              | 58                     | 29                       | 451                      |
| Ashraf M              | 687              | 119                    | 23                       | 829                      |
| Bergsland J           | 25               | 3                      | 2                        | 30                       |
| Jennings L            | 256              | 21                     | 4                        | 281                      |
| Karamanoukian H L     | 4                | 0                      | 1                        | 5                        |
| Kerr P                | 153              | 34                     | 11                       | 198                      |
| Lajos T               | 1                | 0                      | 0                        | 1                        |
| Levinsky L            | 26               | 0                      | 1                        | 27                       |
| Lewin A               | 10               | 0                      | 0                        | 10                       |
| Raza S                | 16               | 2                      | 0                        | 18                       |
| All Others            | 71               | 0                      | 3                        | 74                       |
| TOTAL                 | 1613             | 237                    | 74                       | 1924                     |
| Montefiore - Einstein |                  |                        |                          |                          |
| Camacho M             | 1                | 11                     | 0                        | 12                       |
| Frymus M              | 357              | 84                     | 30                       | 471                      |
| Gold J                | 53               | 34                     | 6                        | 93                       |
| Merav A               | 1                | 0                      | 0                        | 1                        |
| Plestis K A           | 292              | 124                    | 112                      | 528                      |
| Tortolani A           | 127              | 32                     | 9                        | 168                      |
| All Others            | 4                | 11                     | 1                        | 16                       |
| TOTAL                 | 835              | 296                    | 158                      | 1289                     |
| Montefiore - Moses    |                  |                        |                          |                          |
| Attai L               | 217              | 91                     | 7                        | 315                      |
| Camacho M             | 220              | 86                     | 18                       | 324                      |
| Crooke G              | 0                | 1                      | 5                        | 6                        |
| Frymus M              | 1                | 0                      | 1                        | 2                        |
| Gold J                | 157              | 57                     | 17                       | 231                      |
| Merav A               | 232              | 100                    | 16                       | 348                      |
| Plestis K A           | 67               | 24                     | 26                       | 117                      |

|                              | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardia<br>Surgery |
|------------------------------|------------------|------------------------|--------------------------|-------------------------|
| Montefiore - Moses continued |                  |                        |                          |                         |
| Tortolani A                  | 1                | 1                      | 0                        | 2                       |
| All Others                   | 29               | 13                     | 23                       | 65                      |
| TOTAL                        | 924              | 373                    | 113                      | 1410                    |
| Mount Sinai                  |                  |                        |                          |                         |
| Galla J                      | 191              | 93                     | 97                       | 381                     |
| Griepp R                     | 29               | 50                     | 147                      | 226                     |
| Lansman S                    | 256              | 96                     | 106                      | 458                     |
| Nguyen K                     | 1                | 1                      | 23                       | 25                      |
| Spielvogel D                 | 352              | 152                    | 162                      | 666                     |
| All Others                   | 200              | 149                    | 69                       | 418                     |
| TOTAL                        | 1029             | 541                    | 604                      | 2174                    |
| NYU Hospitals Center         |                  |                        |                          |                         |
| Colvin S                     | 69               | 588                    | 114                      | 771                     |
| Culliford A                  | 304              | 203                    | 90                       | 597                     |
| Esposito R                   | 247              | 131                    | 24                       | 402                     |
| Galloway A                   | 177              | 298                    | 71                       | 402<br>546              |
| Grossi E                     | 99               | 62                     | 42                       | 203                     |
| Ribakove G                   | 233              | 145                    | 49                       | 427                     |
| All Others                   | 80               | 38                     | 25                       | 143                     |
| TOTAL                        | 1209             | 1465                   | 415                      | 3089                    |
| New York Hospital - Queens   | 1209             | 1405                   | 415                      | 5005                    |
| Aronis M                     | 378              | 96                     | 12                       | 486                     |
| Ko W                         | 573              | 90<br>142              | 62                       | 480                     |
| Tortolani A                  | 79               | 142                    | 3                        | 101                     |
| All Others                   | 1                | 19                     | 0                        | 101                     |
| TOTAL                        | 1031             | 257                    | 77                       | 1365                    |
| -                            | 1051             | 257                    |                          | 1305                    |
| North Shore                  | <i></i>          |                        |                          | <b>.</b> (              |
| Esposito R                   | 64               | 17                     | 3                        | 84                      |
| Hall M                       | 733              | 308                    | 39                       | 1080                    |
| Hartman A                    | 55               | 67                     | 7                        | 129                     |
| Levy M                       | 372              | 155                    | 41                       | 568                     |
| Pogo G                       | 707              | 271                    | 49                       | 1027                    |
| Vatsia S                     | 286              | 116                    | 39                       | 441                     |
| All Others                   | 0                | 2                      | 10                       | 12                      |
| TOTAL                        | 2217             | 936                    | 188                      | 3341                    |
| Rochester General            |                  |                        |                          |                         |
| Cheeran D                    | 768              | 257                    | 53                       | 1078                    |
| Kirshner R                   | 665              | 255                    | 51                       | 971                     |
| Knight P                     | 447              | 203                    | 37                       | 687                     |
| All Others                   | 124              | 25                     | 10                       | 159                     |
| TOTAL                        | 2004             | 740                    | 151                      | 2895                    |

|                     | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardia<br>Surgery |
|---------------------|------------------|------------------------|--------------------------|-------------------------|
| St. Elizabeth       |                  |                        |                          |                         |
| Carr T              | 345              | 38                     | 8                        | 391                     |
| Hatton P            | 249              | 63                     | 14                       | 326                     |
| Joyce F             | 445              | 154                    | 29                       | 628                     |
| Kelley J            | 153              | 33                     | 9                        | 195                     |
| All Others          | 57               | 7                      | 1                        | 65                      |
| TOTAL               | 1249             | 295                    | 61                       | 1605                    |
| St. Francis         |                  |                        |                          |                         |
| Bercow N            | 818              | 221                    | 41                       | 1080                    |
| Colangelo R         | 799              | 262                    | 13                       | 1074                    |
| Damus P             | 533              | 460                    | 82                       | 1075                    |
| Durban L            | 75               | 19                     | 10                       | 104                     |
| Fernandez H A       | 220              | 30                     | 3                        | 253                     |
| Lamendola C         | 894              | 256                    | 34                       | 1184                    |
| Robinson N          | 733              | 270                    | 50                       | 1053                    |
| Taylor J            | 883              | 387                    | 44                       | 1314                    |
| All Others          | 167              | 24                     | 2                        | 193                     |
| TOTAL               | 5122             | 1929                   | 279                      | 7330                    |
| St. Josephs         |                  |                        |                          |                         |
| Marvasti M          | 570              | 210                    | 42                       | 822                     |
| Nast E              | 141              | 40                     | 5                        | 186                     |
| Nazem A             | 625              | 168                    | 20                       | 813                     |
| Rosenberg J         | 596              | 377                    | 120                      | 1093                    |
| All Others          | 38               | 5                      | 4                        | 47                      |
| TOTAL               | 1970             | 800                    | 191                      | 2961                    |
| St. Lukes-Roosevelt |                  |                        |                          |                         |
| Geller C            | 19               | 16                     | 9                        | 44                      |
| Hoffman D           | 17               | 7                      | 3                        | 27                      |
| Safavi A            | 39               | 17                     | 6                        | 62                      |
| Stelzer P           | 2                | 20                     | 32                       | 54                      |
| Swistel D           | 481              | 162                    | 39                       | 682                     |
| Tranbaugh R         | 6                | 2                      | 0                        | 8                       |
| All Others          | 90               | 49                     | 16                       | 155                     |
| TOTAL               | 654              | 273                    | 105                      | 1032                    |
| St. Peters          |                  |                        |                          |                         |
| Bennett E           | 314              | 280                    | 64                       | 658                     |
| Canavan T           | 91               | 14                     | 1                        | 106                     |
| Dal Col R           | 530              | 197                    | 25                       | 752                     |
| Miller S            | 3                | 0                      | 0                        | 3                       |

#### Table 7 continued:

|                           | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardiad<br>Surgery |
|---------------------------|------------------|------------------------|--------------------------|--------------------------|
| St. Peters continued      |                  |                        |                          |                          |
| Saifi J                   | 368              | 143                    | 18                       | 529                      |
| Sardella G                | 441              | 124                    | 15                       | 580                      |
| All Others                | 50               | 12                     | 10                       | 72                       |
| TOTAL                     | 1797             | 770                    | 133                      | 2700                     |
| St. Vincents              |                  |                        |                          |                          |
| Galdieri R                | 155              | 28                     | 10                       | 193                      |
| Lang S                    | 488              | 127                    | 47                       | 662                      |
| McGinn J                  | 193              | 37                     | 9                        | 239                      |
| Reddy R C                 | 94               | 37                     | 14                       | 145                      |
| Shin YT                   | 179              | 52                     | 16                       | 247                      |
| Tyras D                   | 180              | 37                     | 4                        | 221                      |
| All Others                | 34               | 2                      | 2                        | 38                       |
| TOTAL                     | 1323             | 320                    | 102                      | 1745                     |
| Staten Island Univ- North |                  |                        |                          |                          |
| McGinn J                  | 631              | 86                     | 9                        | 726                      |
| Molinaro P J              | 82               | 24                     | 2                        | 108                      |
| All Others                | 63               | 18                     | 8                        | 89                       |
| TOTAL                     | 776              | 128                    | 19                       | 923                      |
| Strong Memorial           |                  |                        |                          |                          |
| Alfieris G                | 4                | 1                      | 34                       | 39                       |
| Hicks G                   | 367              | 247                    | 59                       | 673                      |
| Knight P                  | 204              | 134                    | 47                       | 385                      |
| Massey H                  | 175              | 66                     | 65                       | 306                      |
| Risher W                  | 284              | 140                    | 102                      | 526                      |
| All Others                | 0                | 0                      | 2                        | 2                        |
| TOTAL                     | 1034             | 588                    | 309                      | 1931                     |
| United Health Services    |                  |                        |                          |                          |
| Quintos E                 | 340              | 57                     | 13                       | 410                      |
| Wong K                    | 331              | 96                     | 21                       | 448                      |
| Yousuf M                  | 336              | 102                    | 18                       | 456                      |
| TOTAL                     | 1007             | 255                    | 52                       | 1314                     |
| Univ. Hosp Stony Brook    |                  |                        |                          |                          |
| Bilfinger T               | 322              | 51                     | 18                       | 391                      |
| Krukenkamp I              | 358              | 150                    | 58                       | 566                      |
| McLarty A                 | 270              | 34                     | 29                       | 333                      |
| Saltman A E               | 229              | 39                     | 42                       | 310                      |
| Seifert F                 | 686              | 122                    | 29                       | 837                      |
| All Others                | 0                | 1                      | 0                        | 1                        |
| TOTAL                     | 1865             | 397                    | 176                      | 2438                     |

#### Table 7 continued:

|                         | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardiad<br>Surgery |
|-------------------------|------------------|------------------------|--------------------------|--------------------------|
| Univ. Hosp Upstate      |                  |                        |                          |                          |
| Alfieris G              | 16               | 37                     | 36                       | 89                       |
| Brandt B                | 256              | 80                     | 30                       | 366                      |
| Elamir N                | 158              | 59                     | 22                       | 239                      |
| Fink GW                 | 281              | 84                     | 33                       | 398                      |
| Myers S                 | 69               | 8                      | 10                       | 87                       |
| Piccone V               | 3                | 0                      | 0                        | 3                        |
| Picone A                | 319              | 122                    | 27                       | 468                      |
| All Others              | 18               | 5                      | 12                       | 35                       |
| TOTAL                   | 1120             | 395                    | 170                      | 1685                     |
| Univ. Hosp. of Brooklyn |                  |                        |                          |                          |
| Anderson J              | 24               | 10                     | 10                       | 44                       |
| Burack J                | 57               | 14                     | 8                        | 79                       |
| Genovesi M              | 55               | 12                     | 2                        | 69                       |
| Jacobowitz I            | 95               | 30                     | 6                        | 131                      |
| Ketosugbo A             | 54               | 9                      | 1                        | 64                       |
| Molinaro P J            | 1                | 0                      | 0                        | 1                        |
| Piccone V               | 8                | 0                      | 2                        | 10                       |
| Reddy R C               | 61               | 25                     | 7                        | 93                       |
| Sabado M                | 156              | 61                     | 20                       | 237                      |
| All Others              | 80               | 18                     | 2                        | 100                      |
| TOTAL                   | 591              | 179                    | 58                       | 828                      |
| /assar Brothers         |                  |                        |                          |                          |
| Ciaburri D              | 358              | 177                    | 24                       | 559                      |
| Zakow P                 | 232              | 28                     | 7                        | 267                      |
| All Others              | 0                | 0                      | 2                        | 2                        |
| TOTAL                   | 590              | 205                    | 33                       | 828                      |
| Veill Cornell-NYP       |                  |                        |                          |                          |
| Altorki N               | 84               | 8                      | 3                        | 95                       |
| Brodman R               | 265              | 65                     | 12                       | 342                      |
| Girardi L               | 811              | 357                    | 477                      | 1645                     |
| Isom O                  | 149              | 250                    | 45                       | 444                      |
| Ko W                    | 150              | 59                     | 8                        | 217                      |
| Krieger K               | 573              | 380                    | 41                       | 994                      |
| Lamberti JJ             | 2                | 3                      | 20                       | 25                       |
| Tortolani A             | 168              | 61                     | 7                        | 236                      |
| All Others              | 110              | 33                     | 9                        | 152                      |
| TOTAL                   | 2312             | 1216                   | 622                      | 4150                     |

#### Table 7 continued:

|                            | Isolated<br>CABG | Valve or<br>Valve/CABG | Other Cardiac<br>Surgery | Total Cardiad<br>Surgery |
|----------------------------|------------------|------------------------|--------------------------|--------------------------|
| Westchester Medical Center |                  |                        |                          |                          |
| Axelrod H                  | 397              | 81                     | 13                       | 491                      |
| Fleisher A                 | 356              | 108                    | 46                       | 510                      |
| Fuzesi L                   | 39               | 0                      | 12                       | 51                       |
| Lafaro R                   | 173              | 77                     | 78                       | 328                      |
| Moggio R                   | 296              | 136                    | 34                       | 466                      |
| Sarabu M                   | 427              | 155                    | 58                       | 640                      |
| Zias E                     | 430              | 85                     | 51                       | 566                      |
| All Others                 | 1                | 0                      | 0                        | 1                        |
| TOTAL                      | 2119             | 642                    | 292                      | 3053                     |
| Winthrop Univ. Hosp.       |                  |                        |                          |                          |
| Hartman A                  | 330              | 355                    | 49                       | 734                      |
| Kofsky E                   | 547              | 157                    | 17                       | 721                      |
| Schubach S                 | 552              | 224                    | 26                       | 802                      |
| Scott W                    | 293              | 74                     | 14                       | 381                      |
| All Others                 | 158              | 32                     | 13                       | 203                      |
| TOTAL                      | 1880             | 842                    | 119                      | 2841                     |
| TATE TOTAL                 | 51224            | 19057                  | 6794                     | 77075                    |

## Criteria Used in Reporting Significant Risk Factors (2002) Based on Documentation in Medical Record

| Patient Risk Factor                               | Definitions                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hemodynamic State                                 | Determined just prior to surgery.                                                                                                                                                                                                                                                                                                 |
| • Unstable                                        | Patient requires pharmacologic or mechanical support to maintain blood pressure or cardiac output.                                                                                                                                                                                                                                |
| • Shock                                           | Acute hypotension (systolic blood pressure < 80 mmHg) or low cardiac index (< 2.0 liters/min/m <sup>2</sup> ), despite pharmacologic or mechanical support.                                                                                                                                                                       |
| Comorbidities                                     |                                                                                                                                                                                                                                                                                                                                   |
| • Chronic Obstructive<br>Pulmonary Disease (COPD) | Patients who require chronic (longer than three months), bronchodilator therapy to avoid disability from obstructive airway disease; or have a forced expiratory volume in one second of less than 75% of the predicted value or less than 1.25 liters; or have a room air $pO_2 < 60$ or a $pCO_2 > 50$                          |
| Extensively Calcified Aorta                       | More than the usual amount (for age) of calcification or plaque formation in the ascending aorta, or plaque, palpable at surgery, in the ascending aorta.                                                                                                                                                                         |
| Peripheral Vascular Disease                       | Patient has either Aortoiliac Disease or Femoral/Popliteal Disease as defined below                                                                                                                                                                                                                                               |
| - Aortoiliac Disease                              | Angiographic demonstration of at least 50% narrowing in a major aortoiliac<br>vessel, previous surgery for such disease, absent femoral pulses, or the inability<br>to insert a catheter or intra-aortic balloon due to iliac aneurysm or obstruction<br>of the aortoiliac arteries.                                              |
| - Femoral/Popliteal Disease                       | Angiographic demonstration of at least 50% narrowing in a major femoral/<br>popliteal vessel, previous surgery for such disease, absent pedal pulses, or<br>inability to insert a catheter or intra-aortic balloon due to obstruction in the<br>femoral arteries.                                                                 |
| • Renal Failure Requiring Dialysis                | The patient is on chronic peritoneal or hemodialysis.                                                                                                                                                                                                                                                                             |
| Ventricular Function                              |                                                                                                                                                                                                                                                                                                                                   |
| • Ejection Fraction                               | Value of the ejection fraction taken closest to the procedure. When a calculated measure is unavailable the ejection fraction should be estimated visually from the ventriculogram or by echocardiography. Intraoperative direct observation of the heart is not an adequate basis for a visual estimate of the ejection fraction |
| • Previous MI, less than 6 hours                  | One or more myocardial infarctions (MI) less than 6 hours before surgery                                                                                                                                                                                                                                                          |
| • Previous MI, 6-23 hours                         | One or more myocardial infarctions (MI) between 6 and 23 hours before surgery                                                                                                                                                                                                                                                     |
| • Previous MI, 1 to 20 days                       | One or more myocardial infarctions (MI) between 1 and 20 days before surgery                                                                                                                                                                                                                                                      |
| Previous Open Heart Operations                    | Open heart surgery previous to the hospitalization. For the purpose of this reporting system, minimally invasive procedures are considered open heart surgery.                                                                                                                                                                    |

## **MEDICAL TERMINOLOGY**

**angina pectoris** - the pain or discomfort felt when blood and oxygen flow to the heart are impeded by blockage in the coronary arteries. Can also be caused by an arterial spasm.

**angiography** - a procedure for diagnosing the condition of the heart and the arteries connecting to it. A thin tube threaded through an artery to the heart releases a dye, which allows doctors to observe blockages with an X-ray camera. This procedure is required before coronary bypass surgery.

angioplasty - also known as percutaneous transluminal coronary angioplasty (PTCA) or percutaneous coronary intervention (PCI). In this procedure, a balloon catheter is threaded up to the site of blockage in an artery in the heart, and is then inflated to push arterial plaque against the wall of the artery to create a wider channel in the artery. Other procedures or devices are frequently used in conjunction with or in place of the balloon catheter to remove plaque. In particular, stents are used for most patients, and devices such as rotoblaters and ultrasound are sometimes used.

**arteriosclerosis** - the group of diseases characterized by thickening and loss of elasticity of the arterial walls, popularly called "hardening of the arteries." Also called atherosclerotic coronary artery disease or coronary artery disease.

**atherosclerosis** - one form of arteriosclerosis in which plaques or fatty deposits form in the inner layer of the arteries.

**coronary artery bypass graft surgery (CABG)** - is a procedure in which a vein or artery from another part of the body is used to create an alternate path for blood to flow to the heart, bypassing the arterial blockage. Typically, a section of one of the large saphenous veins in the leg, the radial artery in the arm or the mammary artery in the chest is used to construct the bypass. One or more bypasses may be performed during a single operation. When no other major heart surgery (such as valve replacement) is included, the operation is referred to as an isolated CABG.

**double, triple, quadruple bypass** - the average number of bypass grafts created during coronary artery bypass graft surgery is three or four. Generally, all significantly blocked arteries are bypassed unless they enter areas of the heart that are permanently damaged by previous heart attacks. Five or more bypasses are occasionally created. Multiple bypasses are often performed to provide several alternate routes for the blood flow and to improve the long-term success of the procedure, not necessarily because the patient's condition is more severe.

**cardiac catheterization** - also known as coronary angiography - a procedure for diagnosing the condition of the heart and the arteries connecting to it. A thin tube threaded through an artery to the heart releases a dye, which allows doctors to observe blockages with an X-ray camera. This procedure is required before coronary bypass surgery.

**cardiovascular disease** - disease of the heart and blood vessels, the most common form is coronary artery disease.

**coronary arteries** - the arteries that supply the heart muscle with blood. When they are narrowed or blocked, blood and oxygen cannot flow freely to the heart muscle or myocardium.

**heart valve**- Gates that connect the different chambers of the heart so that there is a one-way flow of blood between the chambers. The heart has four valves: the tricuspid, mitral, pulmonic, and aortic valves.

incompetent valve- A valve that does not close tightly

ischemic heart disease (ischemia) - heart disease that occurs as a result of inadequate blood supply to the heart muscle or myocardium.

**myocardial infarction** - partial destruction of the heart muscle due to interrupted blood supply, also called a heart attack or coronary thrombosis.

**plaque** - also called atheroma, this is the fatty deposit in the coronary artery that can block blood flow.

risk factors for heart disease - certain risk factors have been found to increase the likelihood of developing heart disease. Some are controllable or avoidable, and some cannot be controlled. The biggest heart disease risk factors are heredity, gender and age; none of which can be controlled. Men are much more likely to develop heart disease than women before the age of 55, although it is the number one killer of both men and women.

Some controllable risk factors that contribute to a higher likelihood of developing coronary artery disease are high cholesterol levels, cigarette smoking, high blood pressure (hypertension), obesity, a sedentary lifestyle or lack of exercise, diabetes and poor stress management.

stenosis - the narrowing of an artery due to blockage. Restenosis is when the narrowing recurs after surgery.

stenotic valve- A valve that does not open fully

valve disease- occurs when a valve cannot open all of the way (reducing flow to the next heart chamber) or cannot close all of the way (causing blood to leak backwards into the previous heart chamber).

**valve repair-** Widening valve openings for stenotic valves or narrowing or tightening valve openings for incompetent valves without having to replace the valves

**valve replacement**- Replacement of a diseased valve. New valves are either mechanical (durable materials such as Dacron or titanium) or biological (tissues taken from pigs, cows or human donors).

# Appendix 1 2000-2002 Risk Factors For Isolated CABG In-Hospital Mortality

The significant pre-procedural risk factors for inhospital mortality following isolated CABG in the 2000-2002 time period are presented in the table below.

Roughly speaking, the odds ratio for a risk factor represents the number of times more likely a patient with that risk factor is of dying in the hospital during or after CABG than a patient without the risk factor, all other risk factors being the same. For example, the odds ratio for the risk factor COPD is 2.081. This means that a patient with COPD is approximately 2.081 times as likely to die in the hospital during or after undergoing CABG as a patient without COPD who has the same other significant risk factors.

For all risk factors in the table except age, ejection fraction, previous MI, sum of binary risk factors squared, and vessels diseased, there are only two possibilities – having the risk factor or not having it. For example, a patient either has COPD or does not have it. Since renal failure is expressed in terms of renal failure with dialysis and without dialysis, the odds ratios are relative to patients with no renal failure.

Previous MI is subdivided into 6 groups: occurring less than 24 hours and having stent thrombosis, occurring less than 6 hours without stent thrombosis; occurring 6-23 hours without stent thrombosis; occurring 1 to 20 days with or without stent thrombosis; occurring 21 days or more prior to the procedure with or without stent thrombosis; and no MI prior to the procedure. The last range, which does not appear in the table below, is referred to as the reference category. The odds ratios for the Previous MI ranges listed below are relative to patients who have not had a previous MI.

Ejection fraction, which is the percentage of blood in the heart's left ventricle that is expelled when it contracts (with more denoting a healthier heart), is subdivided into four ranges (<20%, 20-29%, 30-39% and 40% or more). The last range, which does not appear in the Appendix 1 table, is referred to as the reference category. This means that the odds ratios that appear for the other ejection fraction categories in the table are relative to patients with an ejection fraction of 40% or more. Thus, a patient with an ejection fraction of between 20% and 29% is about 2.550 times as likely to die in the hospital as a patient with an ejection fraction of 40% or higher, all other significant risk factors being the same.

With regard to age, the odds ratio roughly represents the number of times more likely a patient who is over age 60 is to die in the hospital than another patient who is one year younger all other significant risk factors being the same. Thus, a patient undergoing CABG surgery who is 63 years old has a chance of dying in the hospital that is approximately 1.062 times the chance that a 62 year-old patient undergoing CABG surgery has of dying in the hospital, all other risk factors being the same. All patients age 60 or under have roughly the same odds of dying in the hospital if their risk factors are identical.

The sum of binary risk factors squared term is merely the square of the number of risk factors in Appendix 1 that a patient has (not counting age or body surface area, since everybody has them), and is used to improve the ability of the model to predict mortality.

Left Main diseased should be compared with patients who do not have a diseased left main. Therefore, a patient with left main disease is 1.609 times as likely to die in the hospital as a patient without left main disease. Patients with three vessels diseased should be compared to patients with no more than two vessels diseased. **Appendix 1:** Multivariable risk factor equation for isolated CABG hospital deaths in NYS, 2000-2002.

|                                        |                | Logistic Regression |         |            |
|----------------------------------------|----------------|---------------------|---------|------------|
| Patient Risk Factor                    | Prevalence (%) | Coefficient         | P-Value | Odds Ratio |
| Demographic                            |                |                     |         |            |
| Age: Number of years greater than 60   | _              | 0.0604              | < .0001 | 1.062      |
| Female Gender                          | 28.53          | 0.8076              | < .0001 | 2.242      |
| Hemodynamic State                      |                |                     |         |            |
| Unstable                               | 1.00           | 1.1885              | < .0001 | 3.282      |
| Shock                                  | 0.43           | 2.0515              | < .0001 | 7.780      |
| Ventricular Function                   |                |                     |         |            |
| Ejection Fraction                      |                |                     |         |            |
| <20%                                   | 1.81           | 1.5670              | < .0001 | 4.792      |
| 20-29%                                 | 6.75           | 0.9361              | < .0001 | 2.550      |
| 30-39%                                 | 13.37          | 0.6726              | < .0001 | 1.959      |
| Pre-Procedural MI                      |                |                     |         |            |
| MI < 24 hours with Stent Thrombosis    | 0.09           | 2.7769              | < .0001 | 16.070     |
| MI < 6 hours w/o Stent Thrombosis      | 0.61           | 1.7613              | < .0001 | 5.820      |
| MI 6-23 hours w/o Stent Thrombosis     | 0.83           | 1.2349              | < .0001 | 3.438      |
| Previous MI 1-20 days with or w/o      |                |                     |         |            |
| Stent Thrombosis                       | 22.39          | 0.7396              | < .0001 | 2.095      |
| Previous MI $\geq$ 21 days with or w/o |                |                     |         |            |
| Stent Thrombosis                       | 28.60          | 0.3779              | 0.0002  | 1.459      |
| Vessels Diseased                       |                |                     |         |            |
| Left Main                              | 26.33          | 0.4759              | < .0001 | 1.609      |
| Three Vessels                          | 55.24          | 0.4235              | < .0001 | 1.527      |
| Comorbidities                          |                |                     |         |            |
| Cerebrovascular Disease                | 18.88          | 0.5422              | < .0001 | 1.720      |
| COPD                                   | 16.75          | 0.7329              | < .0001 | 2.081      |
| Extensively Calcified Ascending Aorta  | 5.01           | 0.6852              | < .0001 | 1.984      |
| Peripheral Vascular Disease            | 10.88          | 0.6426              | < .0001 | 1.901      |
| Renal Failure, Creatinine > 2.5 mg/dl  | 1.96           | 1.1191              | < .0001 | 3.062      |
| Renal Failure Requiring Dialysis       | 1.56           | 1.7919              | < .0001 | 6.001      |
| Previous Open Heart Operations         | 5.06           | 1.4193              | < .0001 | 4.134      |
| Sum of Binary Risk Factors Squared     | _              | -0.0290             | 0.0014  | 0.971      |
| Intercept = -6.1507                    |                |                     |         |            |

C Statistic = 0.803

### Appendix 2 2000-2002 Risk Factors For Valve Surgery In-Hospital Mortality\_\_\_\_\_

The significant pre-procedural risk factors for inhospital mortality following valve surgery in the 2000-2002 time period are presented in the table below.

Roughly speaking, the odds ratio for a risk factor represents the number of times more likely a patient with that risk factor is of dying in the hospital during or after valve surgery than a patient without the risk factor, all other risk factors being the same. For example, the odds ratio for the risk factor COPD is 1.815. This means that a patient with COPD is approximately 1.815 times as likely to die in the hospital during or after undergoing valve surgery as a patient without COPD who has the same other significant risk factors.

The odds ratio for type of valve surgery represents the number of times more likely a patient with a specific valve surgery has of dying in the hospital during or after that particular surgery than a patient who has had aortic valve replacement surgery, all other risk factors being the same. For example, a patient who has a mitral valve replacement surgery is 1.928 times as likely to die in the hospital during or after surgery as a patient with aortic valve replacement surgery, all other significant risk factors being the same. For all risk factors in the table except age there are only two possibilities – having the risk factor or not having it. For example, a patient either has COPD or does not have it. Since renal failure is expressed in terms of renal failure with dialysis and without dialysis, the odds ratios for both categories are relative to patients with no renal failure.

With regard to age, the odds ratio roughly represents the number of times more likely a patient who is over age 70 is to die in the hospital than another patient who is one year younger all other significant risk factors being the same. Thus, a patient undergoing valve surgery who is 73 years old has a chance of dying in the hospital that is approximately 1.098 times the chance that a 72 year-old patient undergoing valve surgery has of dying in the hospital, all other risk factors being the same. All patients age 70 or under have roughly the same odds of dying in the hospital if their risk factors are identical.

|                                       |                | Logistic Regression |                    |            |
|---------------------------------------|----------------|---------------------|--------------------|------------|
| Patient Risk Factor                   | Prevalence (%) | Coefficient         | P-Value            | Odds Ratio |
| Demographic                           |                |                     |                    |            |
| Age: Number of years greater than 70  | _              | 0.0935              | < .0001            | 1.098      |
| Female Gender                         | 50.81          | 0.2799              | 0.0053             | 1.323      |
| Type of Valve Surgery                 |                |                     |                    |            |
| Aortic Valve Replacement              | 47.82          | V                   | alve Reference Gro | oup        |
| Mitral Valve Replacement              | 21.66          | 0.6566              | < .0001            | 1.928      |
| Mitral Valve Repair                   | 14.64          | -0.3512             | 0.1136             | 0.704      |
| Multiple Valve Repair/Replacement     | 15.88          | 0.9325              | < .0001            | 2.541      |
| Ventricular Function                  |                |                     |                    |            |
| Previous MI 7 days or less            | 1.17           | 0.9252              | 0.0018             | 2.522      |
| Previous MI 8 to 14 days              | 0.59           | 0.8672              | 0.0252             | 2.380      |
| Previous MI 15 days or more           | 11.48          | 0.2935              | 0.0239             | 1.341      |
| Hemodynamic State                     |                |                     |                    |            |
| Unstable                              | 1.26           | 1.2844              | < .0001            | 3.613      |
| Shock                                 | 0.41           | 1.9402              | < .0001            | 6.960      |
| Comorbidities                         |                |                     |                    |            |
| Cerebrovascular Disease               | 12.92          | 0.5041              | < .0001            | 1.655      |
| COPD                                  | 17.86          | 0.5962              | < .0001            | 1.815      |
| Hepatic Failure                       | 0.31           | 2.0271              | < .0001            | 7.592      |
| Renal Failure, Creatinine > 2.5 mg/dl | 2.22           | 0.7306              | 0.0005             | 2.076      |
| Renal Failure Requiring Dialysis      | 2.53           | 1.7229              | < .0001            | 5.600      |
| Previous Open Heart Operations        | 18.64          | 0.7221              | < .0001            | 2.059      |

**Appendix 2:** Multivariable risk factor equation for valve surgery hospital deaths in NYS, 2000-2002.

Intercept = -4.5885 C Statistic = 0.786

# Appendix 3 2000-2002 Risk Factors For Valve and CABG In-Hospital Mortality

The significant pre-procedural risk factors for inhospital mortality following valve and CABG surgery in the 2000-2002 time period are presented in the table below.

Roughly speaking, the odds ratio for a risk factor represents the number of times more likely a patient with that risk factor is of dying in the hospital during or after valve and CABG surgery than a patient without the risk factor, all other risk factors being the same. For example, the odds ratio for the risk factor Peripheral Vascular Disease is 1.590. This means that a patient with Peripheral Vascular Disease is approximately 1.590 times as likely to die in the hospital during or after undergoing valve and CABG surgery as a patient without Peripheral Vascular Disease who has the same other significant risk factors.

The odds ratio for type of valve with CABG surgery represents the number of times more likely a patient with a specific valve with CABG surgery has of dying in the hospital during or after that particular surgery than a patient who has had aortic valve replacement and CABG surgery, all other risk factors being the same. For example, a patient who has a mitral valve replacement and CABG surgery is 1.942 times as likely to die in the hospital during or after surgery as a patient with aortic valve replacement and CABG surgery, all other significant risk factors being the same.

For all risk factors in the table except age, ejection fraction, and previous MI, there are only two possibilities – having the risk factor or not having it. For example, a patient either has Peripheral Vascular Disease or does not have it. Since renal failure is expressed in terms of renal failure with dialysis and without dialysis, the odds ratios for both categories are relative to patients with no renal failure. Ejection fraction, which is the percentage of blood in the heart's left ventricle that is expelled when it contracts (with more denoting a healthier heart), is subdivided into two ranges (<20% and 20% or more). The last range, which does not appear in the Appendix 3 table, is referred to as the reference category. This means that the odds ratios that appear for the other ejection fraction category in the table is relative to patients with an ejection fraction of 20% or more. Thus, a patient with an ejection fraction of <20% is about 2.565 times as likely to die in the hospital as a patient with an ejection fraction of 20% or higher, all other significant risk factors being the same.

Previous MI is subdivided into five groups (occurring less than 24 hours prior to the procedure, 1-7 days prior to the procedure, 8-14 days prior to the procedure, 15 or more days prior to the procedure, and no MI prior to the procedure). The last range, which does not appear in the table below, is referred to as the reference category. The odds ratios for the Previous MI ranges listed below are relative to patients who have not had a previous MI prior to the procedure.

With regard to age, the odds ratio roughly represents the number of times more likely a patient who is over age 70 is to die in the hospital than another patient who is one year younger all other significant risk factors being the same. Thus, a patient undergoing valve and CABG surgery who is 73 years old has a chance of dying in the hospital that is approximately 1.064 times the chance that a 72 year-old patient undergoing valve and CABG surgery has of dying in the hospital, all other risk factors being the same. All patients age 70 or under have roughly the same odds of dying in the hospital if their risk factors are identical.

|                                       |                | Logistic Regression |                |            |
|---------------------------------------|----------------|---------------------|----------------|------------|
| Patient Risk Factor                   | Prevalence (%) | Coefficient         | P-Value        | Odds Ratio |
| Demographic                           |                |                     |                |            |
| Age: Number of years greater than 70  | _              | 0.0622              | < .0001        | 1.064      |
| Female Gender                         | 39.77          | 0.5857              | < .0001        | 1.796      |
| Type of Valve (with CABG)             |                |                     |                |            |
| Aortic Valve Replacement              | 53.94          | Valv                | ve Reference G | roup       |
| Mitral Valve Replacement              | 18.20          | 0.6637              | < .0001        | 1.942      |
| Mitral Valve Repair                   | 19.13          | 0.3366              | 0.0023         | 1.400      |
| Multiple Valve Repair/Replacement     | 8.73           | 1.0872              | < .0001        | 2.966      |
| Ventricular Function                  |                |                     |                |            |
| Ejection Fraction <20%                | 3.73           | 0.9419              | < .0001        | 2.565      |
| Previous MI less than 24 hours        | 1.01           | 1.3001              | < .0001        | 3.670      |
| Previous MI 1 to 7 days               | 8.29           | 0.7413              | < .0001        | 2.099      |
| Previous MI 8 to 14 days              | 5.15           | 0.5758              | 0.0002         | 1.779      |
| Previous MI 15 days or more           | 26.95          | 0.3230              | 0.0004         | 1.381      |
| Hemodynamic State                     |                |                     |                |            |
| Unstable                              | 2.26           | 0.3681              | 0.0588         | 1.445      |
| Shock                                 | 1.11           | 1.2987              | < .0001        | 3.665      |
| Comorbidities                         |                |                     |                |            |
| Peripheral Vascular Disease           | 12.25          | 0.4640              | < .0001        | 1.590      |
| Malignant Ventricular Arrhythmia      | 1.87           | 0.7866              | 0.0002         | 2.196      |
| Renal Failure, Creatinine > 2.5 mg/dl | 3.43           | 0.8654              | < .0001        | 2.376      |
| Renal Failure Requiring Dialysis      | 2.53           | 1.4213              | < .0001        | 4.142      |
| Previous Open Heart Operations        | 10.14          | 0.7055              | < .0001        | 2.025      |

Appendix 3: Multivariable risk factor equation for valve and CABG surgery hospital deaths in NYS, 2000-2002.

Intercept = -3.8373 C Statistic = 0.746

### **NEW YORK STATE CARDIAC SURGERY CENTERS**

Albany Medical Center Hospital New Scotland Avenue Albany, New York 12208

Arnot Ogden Medical Center 600 Roe Avenue Elmira, New York 14905

Bellevue Hospital Center First Avenue and 27th Street New York, New York 10016

Beth Israel Medical Center 10 Nathan D. Perlman Place New York, New York 10003

Buffalo General Hospital 100 High Street Buffalo, New York 14203

Columbia Presbyterian Medical Center – NY Presbyterian 161 Fort Washington Avenue New York, New York 10032

Ellis Hospital 1101 Nott Street Schenectady, New York 12308

Erie County Medical Center 462 Grider Street Buffalo, New York 14215

Lenox Hill Hospital 100 East 77th Street New York, New York 10021

Long Island Jewish Medical Center 270-05 76th Avenue New Hyde Park, New York 11040

Maimonides Medical Center 4802 Tenth Avenue Brooklyn, New York 11219

Mercy Hospital 565 Abbot Road Buffalo, New York 14220

Millard Fillmore Hospital 3 Gates Circle Buffalo, New York 14209 Montefiore Medical Center Henry & Lucy Moses Division 111 East 210th Street Bronx, New York 11219

Montefiore Medical Center-Weiler Hospital of A. Einstein College 1825 Eastchester Road Bronx, New York 10461

Mount Sinai Medical Center One Gustave L. Levy Place New York, New York 10019

NYU Hospitals Center 550 First Avenue New York, New York 10016

New York Hospital Medical Center-Queens 56-45 Main Street Flushing, New York 11355

North Shore University Hospital 300 Community Drive Manhasset, New York 11030

Rochester General Hospital 1425 Portland Avenue Rochester, New York 14621

St. Elizabeth Medical Center 2209 Genesee Street Utica, New York 13413

St. Francis Hospital Port Washington Boulevard Roslyn, New York 11576

St. Joseph's Hospital Health Center 301 Prospect Avenue Syracuse, New York 13203

St. Luke's Roosevelt Hospital Center 11-11 Amsterdam Avenue at 114th Street New York, New York 10025

St. Peter's Hospital 315 South Manning Boulevard Albany, New York 12208 St. Vincent's Hospital & Medical Center of NY 153 West 11th Street New York, New York 10011

Staten Island University-North 475 Seaview Avenue Staten Island, New York 10305

Strong Memorial Hospital 601 Elmwood Avenue Rochester, New York 14642

United Health Services Wilson Hospital Division 33-57 Harrison Street Johnson City, New York 13790

University Hospital at Stony Brook SUNY Health Science Center at Stony Brook Stony Brook, New York 11794-8410

University Hospital of Brooklyn 450 Lenox Road Brooklyn, New York 11203

University Hospital Upstate Medical Center 750 East Adams Street Syracuse, New York 13210

Vassar Brother's Hospital 45 Reade Place Poughkeepsie, NY 12601

Weill-Cornell Medical Center – NY Presbyterian 525 East 68th Street New York, New York 10021

Westchester Medical Center Grasslands Road Valhalla, New York 10595

Winthrop – University Hospital 259 First Street Mineola, New York 11501

Additional copies of this report may be obtained through the Department of Health web site at http://www.health.state.ny.us or by writing to:

Cardiac Box 2001 New York State Department of Health Albany, New York 12220



State of New York George E. Pataki, Governor

Department of Health Antonia C. Novello, M.D., M.P.H., Dr.P.H., Commissioner